
AP Physics C: Mechanics
Review

Types of Error (in labs)
1. System Error

Materials, Air Resistance, Friction
2.Mathematical Error
Truncating, Calculation error
3.Observational Error

Parallax, Reaction time, measuring distance

M
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UNIT 1: 1-D Motion (with Calculus)
Fundamentals of Unit 1 Physics
Derivative : slope of a tangent line at a point on a function

- Derivative of f(x) is denoted as or f’(x)𝑑𝑓(𝑥)
𝑑𝑥

- 2nd derivative of f(x) is denoted as or f’’(x)𝑑
𝑑𝑥 ( 𝑑𝑓(𝑥)

𝑑𝑥 )

- Common Derivatives: (A and B are constants)
- f(x) = A f’(x) = 0
- f(x) = Ax + 0 f’(x) = A
- f(x) = Axn f’(x) = Anxn-1 f’’(x) = An(n-1)xn-2

- f(x) = Asin(Bx) f’(x) = ABcos(Bx) f’’(x) = -AB2sin(Bx)
- f(x) = Acos(Bx) f’(x) = -ABsin(Bx) f’’(x) = -AB2cos(Bx)
- f(x) = AeBx f’(x) = ABeBx

- f(x) = ln x f’(x) = 1
𝑥

Kinematics
Instantaneous Velocity (m/s) : velocity of an object at that instant in time (slope of a position vs time
graph at that time)

- v(t) = =
∆𝑡 0
lim
→

∆𝑥
∆𝑡

𝑑𝑥(𝑡)
𝑑𝑡

Instantaneous Acceleration (m/s2) : acceleration of an object at that instant in time (slope of a velocity
vs time graph at that time)

- a(t) = = =
∆𝑡 0
lim
→

∆𝑣
∆𝑡

𝑑𝑣(𝑡)
𝑑𝑡

𝑑2𝑥(𝑡)

𝑑𝑡2

Jerk etc… : term for polynomials of max degree of 3 or more which means constant is not constant

Boundary Conditions : the conditions that define the boundary of a system or scenario
- Initial conditions are an example of boundary conditions

Deriving Kinematics with Calculus
x(t) = C1t2 + C2t + C3 = ½ at2 + Vo + xo
v(t) = 2C1t + C2

a(t) = 2C1

x(0) = xo v(0) = vo a(0) = a

xo= C1(0)2 + C2(0) + C3

xo = C3

vo = 2C1(0) + C2



vo = C2

a = 2C1

Relative Velocity
An object’s velocity relative to another object

- Helps solve questions that initially seem difficult

TIPS ON HOW TO SOLVE PROBLEMS:
1. Derivatives for trig functions

a. sin → cos → -sin → -cos → -(-sin) or sin → repeats
2. Use relative velocities when possible to solve problems involving two objects at different speeds



UNIT 2: Multidimensional Motion and Vectors
Fundamentals of Unit 2 Physics
Unit Vectors : vectors that have a magnitude of 1 and points along the +x-axis, +y-axis, or +z-axis

- |a| means magnitude of a
- For labeling vectors in 3D space (doesn’t have to be 3D)
- Î = “I hat” = x-axis = x component
- ĵ = “J hat” = y-axis = y component
- k̂ = “K hat” = z-axis = z component
- r = rxi + ryj + rzk

- magnitude = 𝑟
𝑥
2 + 𝑟

𝑦
2 + 𝑟

𝑧
2

Right Handed Coordinate System/Rule : mnemonic for understanding orientation of vectors and axes
in 3 dimensional space, used for cross products

- For a cross product, “Sweep” the first vector into the second vector, the thumb points toward
direction of the third vector

- A x B = “Sweep” vector A into vector B, thumb is the direction of C

Taking derivatives of unit vectors
r = position vector
v = velocity vector
a = acceleration vector

v = = = = vxi + vyj + vzk
𝑑𝑟
𝑑𝑡

𝑑𝑟
𝑥
𝑖

𝑑𝑡 +
𝑑𝑟

𝑦
𝑗

𝑑𝑡 +
𝑑𝑟

𝑧
𝑘

𝑑𝑡
𝑑𝑥
𝑑𝑡 + 𝑑𝑦

𝑑𝑡 + 𝑑𝑧
𝑑𝑡

a = = = = axi + ayj + azk
𝑑𝑣
𝑑𝑡

𝑑𝑣
𝑥
𝑖

𝑑𝑡 +
𝑑𝑣

𝑦
𝑗

𝑑𝑡 +
𝑑𝑣

𝑧
𝑘

𝑑𝑡
𝑑2𝑥

𝑑𝑡2 + 𝑑2𝑦

𝑑𝑡2 + 𝑑2𝑧

𝑑𝑡2

Adding and subtracting vectors
For unit vectors:
Add or subtract i components, j components, and k components of all vectors to get the resultant vector
Δr = rf - ro

Vector Addition Rules:
A, B, and C are vectors p and q are constants

1. A + B = B + A
2. A + (B + C) = (A + B) + C
3. A + 0 = A [Null Vector Property]
4. A + (-A) = 0 [0 = null vector]
5. p(A + B) = (pA + pB) [Multiplicative property]



6. (q + p)A = qA + pA

Vector Products (dot and cross product)
Dot product → Scalar
Cross product → Perpendicular vector
a • b ≠ a x b
Dot Product:
i * j or j * k or k * i = 0 (1 * 1 * cos90˚ = 0 as these unit vectors are perpendicular to each other)
i * i or j * j or k * k = 1 (1 * 1 * cos0˚ = 1)
Cross Product:
i * j = k
j * k = i
k * i = j

Dot Product : dot product of 2 vectors occur when the 2 vectors are “dotted” and results in a scalar
quantity

- |a • b| = a projection of vector a along vector b then scaled by magnitude of b
- |a • b| = |a||b|cosθ

- θ = angle between vector a and b
- This formula is useful for obtaining the angle between the two vectors

- Find θ with cos-1(|a • b| / |a||b|)
- a • b = (axi * bxi) + (ayj * byj) + (azk * bzk) = scalar quantity
- Example: Work is a dot product of Force and Displacement

- W = F • Δx

Cross Product : the cross product of two vectors occurs when two vectors are “crossed” [multiplied] in
such a way that it results in another vector

- |a x b| = vector c that is orthogonal (perpendicular) to both vector a and b
- |a x b| = |a||b|sinθ
- Find direction of 3rd vector (c) or resulting vector by using right hand rule
- a x b = (AyBz - ByAz)i - (AxBz - BxAz)j + (AxBy - BxAy)k
- Example: Torque is the cross product of Radius and Force

- 𝜏 = r x F



3D Kinematics
Same as 2D kinematics, but have 3 columns instead for x-direction, y-direction, and z-direction.
Apply kinematic equations if acceleration is present and Δx = V * t if acceleration isn’t present
Answer in unit vector form (i, j, and k)
Velocity and acceleration functions can be derived from the position function using derivatives
MAKE SURE UNITS ARE PRESENT

Applications of Multidimensional Motion
Simple 2D Kinematics

Projectiles:

Vx(Δx, Δy) = Δ𝑥 −5
Δ𝑦

Time independent equations:



Δx = Δy = t =
2𝑉

𝑜
2𝑠𝑖𝑛θ𝑐𝑜𝑠θ

𝑔

𝑉
𝑜
2 𝑠𝑖𝑛2θ

2𝑔

2𝑉
𝑜
𝑠𝑖𝑛θ

𝑔

Equation of the path (trajectory):

y(x) = xtanθ - 𝑔𝑥2

2𝑉
𝑜
2𝑐𝑜𝑠2θ

Centripetal Motion combined with unit vectors and calculus

= ⍵ * tθ

r = xi + yj
r = (rcosθ)i + (rsinθ)j

|r| = 𝑅2𝑐𝑜𝑠2θ + 𝑅2𝑠𝑖𝑛2θ

|r| = 𝑅2(𝑐𝑜𝑠2θ + 𝑠𝑖𝑛2θ)

|r| = 𝑅2(1)
|r| = R

Substitute = ⍵ * t into vector rθ
r = (rcos(⍵t))i + (rsin(⍵t))j
v = (-R⍵sin(⍵t))i + (R⍵cos(⍵t))j
a = (-R⍵2cos(⍵t))i - (R⍵2sin(⍵t))j
a = -⍵2[(Rcos(⍵t)i + (Rsin(⍵t))j] [negative of vector r is vector a, opposite direction (towards center)]
|a| = -⍵2(r vector)
|a| = -⍵2R

|a| = ( 𝑣2

𝑅2 )𝑅

|a| = v2 / R



@ equator: (r = rE because there’s no y-component, position vector is the radius of the Earth)
RE = re
ac = v2 / RE

ac = (r⍵)2 / rE
ac = r⍵2

ac = RE⍵
2

ac = 6.38 x 106 2[ 2π
24 * 3600 ]

ac = 0.03 m/s2

TIPS ON HOW TO SOLVE PROBLEMS:
1. For cross products, draw out the matrix/table to easily get the resulting vector
2. The projection of vector a on vector b is |a|cosθ. The projected vector will have the cosθ next to it.



UNIT 3: Forces and Newton’s Laws of Motion
Fundamentals of Unit 3 Physics
Forces - 4 Fundamental Forces (Field Forces)

1. Gravitational Force
2. Electromagnetic Force
3. Weak Nuclear Force (2nd strongest)
4. Strong Nuclear Force (strongest)

Field Forces : there is no physical contact, but the field interacts with the object
- Not Tension, Drag, Friction, or Normal Force

Contact Forces : here is physical contact between objects

Newton’s Laws of Motion
NOT VALID in an accelerating or rotating reference frame

Newton’s 1st Law (N1L) : In an inertial reference frame, an object at rest stays at rest and an object in
motion continues its motion along a straight line path with constant velocity unless acted upon by a
non-zero net force (unbalanced force)

- ∑F = 0
- Examples/Problems:

- Tension in a cable
- Drag Force and Terminal Velocity

Newton’s 2nd Law (N2L) : In an inertial reference frame, a non zero net external force causes an object
to accelerate. The acceleration of the object is inversely proportional to the mass of the object and directly
proportional to the magnitude of the net external force,

- ∑F = ma = m =𝑑𝑣
𝑑𝑡

𝑑2𝑟

𝑑𝑡2

- ∑F = (Net external force = derivative of momentum)𝑑𝑝
𝑑𝑡

- Examples/Problems:
- Elevator Problems
- Mass-Pulley System
- Incline Plane

- a = gsin (frictionless)θ
- FN = mgcosθ

- Pulley and Incline Planes
- Bank Curves

- FN = mg / cosθ
- Different from Incline Plane because follows centripetal path and FN

needs to be greater to supply the centripetal acceleration (FNX)
- Rollercoaster Problem



Forces of Friction
Force of Static Friction (Ffs)

- Ffs ≤ μsFN (Inequality)
- Ffmax = μsFN (maximum static friction force)
- Proportional to applied force until Ffmax, not constant
- Doesn’t always oppose or prevent motion, sometimes it can start motion
- Can accelerate an object (walking)
- μs is a function of 2 surface textures in physical contact

Force of Kinetic Friction (Ffk)
- Ffk = μkFN
- Always opposes motion of an object
- Approximately constant between two surfaces, no matter how much applied force
- Can accelerate an object (block slipping off another moving surface)
- μk is a function of 2 surface textures in physical contact

Critical Slip and Critical Kinetic Angle
Critical Slip Angle (θcs):Maximum angle for which the block doesn’t slide down
a = 0
a = gsinθ - μsgcosθ
0 = gsinθ - μsgcosθ
μsgcosθ = gsinθ
μscosθ = sinθ
μs = tanθ
θcs = tan-1(μs)

Critical Kinetic Angle (θck): Angle for which the block slides down with constant velocity



a = 0
a = gsinθ - μkgcosθ
0 = gsinθ - μkgcosθ
μkgcosθ = gsinθ
μkcosθ = sinθ
μk = tanθ
θck,= tan-1(μk)

Tug of War Diagram (TOW)
Internalizing forces between objects (Tension/Normal Force)
Useful for quickly calculating the acceleration of a system

∑F = ma
m2g - Ffk = (m1 + m2)a
m2g - μkFN= (m1 + m2)a
m2g - μkm1g = (m1 + m2)a

a =
𝑔(𝑚

2
 − µ

𝑘
𝑚

1
)

𝑚
1
 + 𝑚

2

Tension can be solved by FBD with
mass 1 or mass 2

Stacked Blocks

- Both masses are sliding on a frictionless surface
- Force keeping Mass 1 on top of Mass 2 is static friction
- If Mass 1 were to “slip off” of Mass 2, kinetic friction would provide the acceleration



Combining and Splitting Springs

Converting parallel springs to series:
(Δy is the same for all springs)
(F is the sum for all springs)
𝐹

𝑠
= 𝐹

1
+ 𝐹

2

𝐾
𝑒𝑞

∆𝑦 = 𝐾
1
∆𝑦 + 𝐾

2
∆𝑦

𝐾
𝑒𝑞

= 𝐾
1

+ 𝐾
2

Converting series springs to parallel:
(Fs is the same for all springs)
(Δy is the sum for all springs)
∆𝑦

𝑒𝑞
= ∆𝑦

1
+ ∆𝑦

2
𝐹

𝐾
𝑒𝑞

= 𝐹
𝐾

1
+ 𝐹

𝐾
2

1
𝐾

𝑒𝑞
= 1

𝐾
1

+ 1
𝐾

2

𝐾
𝑒𝑞

= 1
1

𝐾
1

+ 1
𝐾

2

Centripetal Acceleration
ac = v2 / r

TIPS ON HOW TO SOLVE PROBLEMS:
1. Static and Kinetic Friction can both provide acceleration

UNIT 4: Work, Power, and Energy
Fundamentals of Unit 4 Physics
Work (J) : transfer of energy to, or from a system by the action of force

- W = FΔxcosθ = F * Δx = ∫ 𝐹(𝑥) 𝑑𝑥

- Work positive if F and Δx in same direction, KE increases
- Work negative if F and Δx in opposite direction, KE decreases
- Work is area under curve of F vs Δx graph (integral derived from chain rule)
- Work of something in orbit is 0 because F is perpendicular to Δx
- Dot product of F and Δx vectors



Power (W) : Rate of doing work, or rate of energy dissipation or rate of energy generation.
- Scalar quantity

- P = = F * v
𝑑𝑊
𝑑𝑡

- 1 watt of power is when 1 joule of work is performed in 1 second

Work - Kinetic Energy Theorem
W = ΔKE = KEf - KEo

Conservative vs Non-Conservative Forces
Conservative Force : the work done by the conservative forces is independent of the path and only
depends on displacement

- Gravitational force, spring force, tension, normal, electrostatic

Non-Conservative Force : the work done by non-conservative forces dependent of the path taken
- Friction force, drag force, resistive forces

Potential Energy
Potential Energy (J) : Energy of a system due to its position relative to some reference point

- Potential energy of a system is the minimum work done by an external agent against a
conservative force (external force like applied force)

- If work done by external agent is positive, then system gained potential energy
- Wext positive means ΔU increase

- If work done by external agent is positive, then system gained potential energy
- Wext negative means ΔU decrease

- W = ΔU for external agents/forces (applied force)
- Potential energy of a system is the negative of the work done by the conservative force (internal

force like gravity/spring)
- If work done by internal agent is positive, then system lost potential energy

- Wint positive means ΔU decrease
- If work done by external agent is positive, then system gained potential energy

- Wint negative means ΔU increase
- W = -ΔU for internal agents/forces (gravitational/spring force)

- -ΔU = W =
𝐴

𝐵

∫ 𝐹(𝑟) 𝑑𝑟

- ΔU = -W = - F(r) is conservative internal force (gravity/spring)
𝐴

𝐵

∫ 𝐹(𝑟) 𝑑𝑟

- F(r) = F(r) is conservative internal force (gravity/spring)− 𝑑𝑈
𝑑𝑡

Orbit is bound if Ug is negative = required energy to break mass out of orbit
Orbit is unbound if Ug is positive = required energy to place energy in orbit (unsure)



Mechanical energy and its conservation
Mechanical Energy (J) : sum of all of a system’s kinetic energies and potential energies of all particles

- Mechanical energy is conserved (total change in mechanical energy is 0) if there are only
conservative forces present in the system (no friction/drag/resistive forces)

- Emech = Ug + Us + KE

Potential Energy Curves
Potential curves for systems with only conservative forces (gravity, springs, random force)
All forces are generally internal because dependent on displacement so these are true:

- W = -ΔU or -W = ΔU

- F(x) = − 𝑑𝑈
𝑑𝑥

Important things to note:
- We don’t care about what happens above Emech, it can exist there but doesn’t matter to us

How to find:
- Turning point: U max, KE min OR value of x where Emech is reached

- Equilibrium: U min, KE max OR = 0 (guarantees max or min)
𝑑𝑈
𝑑𝑡

- = + means minimum and solve for x, this will give a stable equilibrium
𝑑𝑈2

𝑑2𝑡

- = - means maximum and solve for x, this will give a unstable equilibrium
𝑑𝑈2

𝑑2𝑡
- Position: Find two points on the line of the desired point, then find slope of line, then find

y-intercept using y=mx+b with one of the given points, then find the x value with the complete
y=mx+b formula



- Limits of where particle moves: Find mechanical energy by adding KE and U and solve for the
points that reach that mechanical energy

- Limits of where particle is bound: minimum potential energy to wherever the endpoint is or
where it says “In the limit as r increases without bound, U(r) approaches +x J”

- Limits of where particle can be found: limits of x values below the Emech

- Binding energy of system or additional energy needed for particle to move to infinity/where it is
unbound:

- Emech + binding energy = energy needed to get to infinity
- Energy above Emech to get to point where particle goes unbound

- Speed: find KE at point, solve for velocity
- Maximum KE: x value where it’s farthest below Emech

- KE: find out how much energy it is below Emech because KE = |ΔU|, KE always positive

- Force: F(x) = − 𝑑𝑈
𝑑𝑡

- Work: ΔU = -W = - W = -ΔU
𝐴

𝐵

∫ 𝐹(𝑟) 𝑑𝑟

- W =
𝐴

𝐵

∫ 𝐹(𝑟) 𝑑𝑟

- ΔU = Uf - Uo

Types of Equilibriums
Stable Equilibrium : A small displacement away from the equilibrium results in a restoring force that
accelerates a particle back to equilibrium position

- Marble in cup analogy
- Like U shape, concave up

- F(x) = − 𝑑𝑈
𝑑𝑡

Unstable Equilibrium : A small displacement away from the equilibrium results in a restoring force that
accelerates a particle back to equilibrium position

- Rollercoaster analogy
- Like upside down U shape, concave down

- F(x) = − 𝑑𝑈
𝑑𝑡

Neutral Equilibrium : A small displacement away from the equilibrium results in no restoring force and
particle remains in equilibrium without any change in potential energy, continues at rest or in constant
velocity

- Flat line

- F(x) = = 0− 𝑑𝑈
𝑑𝑡



TIPS ON HOW TO SOLVE PROBLEMS:
1. Important formulas:

a. External agents (applied force): W = ΔU
b. Internal agents (gravity, spring): W = -ΔU

c. W = ALWAYS
𝐴

𝐵

∫ 𝐹(𝑟) 𝑑𝑟

d. ΔU = -W = - ONLY FOR POTENTIAL CURVES/INTERNAL AGENTS
𝐴

𝐵

∫ 𝐹(𝑟) 𝑑𝑟

e. F(x) = ONLY FOR POTENTIAL CURVES/INTERNAL AGENTS− 𝑑𝑈
𝑑𝑡

f. = 0 for finding equilibriums (stable, unstable, neutral)
𝑑𝑈
𝑑𝑡

i. determines which equilibrium type
𝑑𝑈2

𝑑2𝑡
2. Use W = FΔx to find out if work should be positive or negative
3. When looking at equilibriums, try “placing a marble” on the potential energy curve to find the

type of equilibrium
4. When looking at a potential energy curve, try “placing a marble” on the potential curve to see

how it will move and if it will reach a certain point, will it be moving, etc.
5. Ug = 0 is set by you
6. A conservative force can be internal or external, same with non-conservative force

UNIT 5: System of Particles and Linear Momentum
Fundamentals of Unit 5 Physics
Linear Momentum (kg * m/s) : the quantity that represents the linear progress of motion of a particle or
a system

- p = mv
- Vector quantity
- Direction is derived from the direction of velocity
- Derivative of momentum with respect to time is equal to net external force

- ∑F = ma = m 𝑑𝑣
𝑑𝑡



- ∑F = (mv) Mass can also change𝑑
𝑑𝑡

- ∑F = 𝑑𝑝
𝑑𝑡

- Conservation of momentum = momentum remains constant = no net external force
- Δp = 0 means ∑Fexternal = 0

Impulse (kg * m/s or N * s) : change in momentum of a particle or a system
- Vector quantity
- Direction is derived from direction of force
- Area under curve of a force vs time graph
- Deriving

- ∑Fext =
𝑑𝑝
𝑑𝑡

- dp = dt ∑Fext
- ∫dp = ∫dt ∑Fext
- pf, - po = ∑Fext Δt
- J = Δp = ∑Fext Δt (constant force and time independent)

- ∑Fext =
𝑑𝑝
𝑑𝑡

- dp = ∑Fext dt
- ∫dp = ∫∑Fext dt
- J = Δp = ∫∑Fext dt (variable force and time dependent) or (integrate F(t))
- J = ∫F dt

- Average force
- Get impulse first (with change in momentum)
- Then divide by Δt
- Δp = Favg Δt
- Favg = Δp/Δt
- Greater impact time means lower force

Types of Collisions
Inelastic Collision :

- Momentum conserved and Kinetic energy is lost
- Occurs when two objects collide and stick together



- Δp = 0 ∑Fext= 0 ΔKE < 0
- m1v1 + m2v2 = (m1 + m2)v’

Elastic Collision :

- Momentum and Kinetic energy is conserved
- Occurs when two objects collide and bounce off each other
- Ex: bouncy ball
- Δp = 0 ∑Fext= 0 ΔKE = 0
- m1v1 + m2v2 = m1v1’ + m2v2’

- v1’ = (
𝑚

1
 − 𝑚

2

𝑚
1
 + 𝑚

2
)𝑣

1
 + (

2𝑚
1

𝑚
1
 + 𝑚

2
)𝑣

2
 

- v2’ = (
2𝑚

1

𝑚
1
 + 𝑚

2
)𝑣

1
 + (

𝑚
2
 − 𝑚

1

𝑚
1
 + 𝑚

2
)𝑣

2
 

- Can solve for final velocities also using Center of Mass velocity (Vcm) [Look at Center of Mass]
- v1’ = 2vcm - v1
- v2’ = 2vcm - v2

Superelastic (Explosion) Collision :

- Momentum is conserved and Kinetic energy increases
- Occurs when two objects are together and come apart
- Ex: astronaut pushing off of spaceship, rocket
- Δp = 0 ∑Fext= 0 ΔKE > 0
- (m1 + m2)v = m1v1’ + m2v2’

Center of Mass
Center of Mass : point in space where the mass of all particles of the system can be concentrated

- Behaves like an actual mass and the behavior is very predictable
- Take time derivatives to go from xcm → vcm → acm



- xcm = = = M = total mass of system
𝑚

1
𝑥

1
 + 𝑚

2
𝑥

2

𝑚
1
 + 𝑚

2

∑𝑚
𝑖
𝑥

𝑖

𝑚
1
 + 𝑚

2

1
𝑀 ∑𝑚

𝑖
𝑥

𝑖

- vcm = = = = total momentum in system
𝑚

1
𝑣

1
 + 𝑚

2
𝑣

2

𝑚
1
 + 𝑚

2

∑𝑚
𝑖
𝑣

𝑖

𝑚
1
 + 𝑚

2

1
𝑀 ∑𝑚

𝑖
𝑣

𝑖
∑𝑚

𝑖
𝑣

𝑖

- acm = = = = net external force
𝑚

1
𝑎

1
 + 𝑚

2
𝑎

2

𝑚
1
 + 𝑚

2

∑𝑚
𝑖
𝑎

𝑖

𝑚
1
 + 𝑚

2

1
𝑀 ∑𝑚

𝑖
𝑎

𝑖
∑𝑚

𝑖
𝑎

𝑖

- COM in multiple dimensions
- rcm = xcmi + ycmj + zcmk = =1

𝑀 ∑𝑚
𝑖
𝑥

𝑖
1
𝑀 ∫𝑥 𝑑𝑚

- Using Center of Mass for solving final velocities for inelastic collision
- Draw diagram
- Calculate vcm
- Subtract vcm from both velocities (v1 and v2) to get U1 and U2

- Flip signs to get U1’ and U2’
- Add vcm to U1’ and U2’ to get final velocities (v1’ and v2’)
- v1’ = 2vcm - v1
- v2’ = 2vcm - v2

Linear Mass Density : constant through a uniform object, mass per unit of length is constant
- There’s also area mass density and volume mass density
- 𝑀

𝐿 = 𝑑𝑚
𝑑𝑥

- 𝑀
𝐿 𝑑𝑥 = 𝑑𝑚

- → → → →1
𝑀 ∫𝑥 𝑑𝑚  1

𝑀 ∫𝑥 𝑀
𝐿 𝑑𝑥 1

𝐿 ∫𝑥𝑑𝑥  𝐿2

2𝐿 − 0 𝐿
2

2D Momentum
Momentum in a 2D plane

- Momentum in each direction is conserved
- Po = Pf
- pxi + pyj = pxi + pyj
- Pf = mvf = pxi + pyj
- vf = (pxi + pyj) / m1 + m2

- θ = tan-1(py / px) = tan-1(vy / vx)

Example: Cue ball and a pool ball being hit off center
If m1 = m2 and v2 = 0, the angle between m1 and m2 after their collision is ALWAYS 90˚ (pool ball
scenario)

When doing 2D momentum problems, treat it as a normal momentum problem but split it into each
direction

Exploding Projectiles
Rocket exploding at top of the trajectory (apex), how far will the warhead go?



Using kinematics:
- Find speed, time, and displacement before the collision (explosion)
- Use conservation of momentum to find speed after collision
- Find time and displacement after the collision (explosion)
- Add displacement before and after collision

Using COM: (easier)
- Find the time to the apex and multiply by 2 to get time until COM hits the ground again
- Use the total time to find the range of COM

- Use COM formula (xcm = ) to get x2 xcm = R, x1 = R/2
𝑚

1
𝑥

1
 + 𝑚

2
𝑥

2

𝑚
1
 + 𝑚

2

Ballistics Pendulum
Shooting a bullet at a block attached to a string, find the initial speed of the bullet.

Use conservation of momentum to find expression for the initial speed of the bullet
Use conservation of mechanical energy to find expression for the final speed of the block and bullet after
collision

V = m/s( 𝑚+𝑀
𝑚 ) 2𝑔𝐿(1 − 𝑐𝑜𝑠Θ)



Rocket Propulsion
Mass and speed of a rocket changes, we need to account for this change.

Conservation of momentum is applied to find the initial and final momentum of all objects
- u = speed of exhaust gas
- dm/dt = rate of rocket’s mass change with respect to time

Rocket Equation: 0 = 𝑚𝑎 − 𝑢 𝑑𝑢
𝑑𝑡

- = thrust𝑢 𝑑𝑢
𝑑𝑡

- = force𝑚𝑎

Burn in Space Equation (without gravity’s pull): 𝑣
𝑓

− 𝑣
𝑜

=  − 𝑢𝑙𝑛(
𝑚

𝑓

𝑚
𝑜

)

Launch from Earth Equation: 𝑣
𝑓

− 𝑣
𝑜

=  − 𝑢𝑙𝑛(
𝑚

𝑓

𝑚
𝑜

) − 𝑔𝑡

- gt is the “price” or loss in final speed as a result of launching from Earth

TIPS ON HOW TO SOLVE PROBLEMS:
1. Important formulas:

a. ∑F = (net external force = derivative of momentum)𝑑𝑝
𝑑𝑡

b. J = ∫F dt (impulse = integral of force) (reverse of equation a)
c. J = Δp (impulse = change in momentum)
d. J = ∑Fext Δt (impulse = net external force * change in time/impact time)
e. J = Favg Δt (impulse = average force * change in time/impact time)
f. Δp = 0 ∑Fext= 0 (conservation of momentum and net external

force = 0)
g. v1’ = 2vcm - v1AND v2’ = 2vcm - v2 (equations using COM to find final speed of

elastic collision)

h. xcm = = (position of COM)
𝑚

1
𝑥

1
 + 𝑚

2
𝑥

2

𝑚
1
 + 𝑚

2

1
𝑀 ∑𝑚

𝑖
𝑥

𝑖

i. vcm = = (velocity of COM, relates to total momentum)
𝑚

1
𝑣

1
 + 𝑚

2
𝑣

2

𝑚
1
 + 𝑚

2

1
𝑀 ∑𝑝

𝑖



j. acm = = (acceleration of COM, relates to net external
𝑚

1
𝑎

1
 + 𝑚

2
𝑎

2

𝑚
1
 + 𝑚

2

1
𝑀 ∑𝐹

𝑒𝑥𝑡

force)
k. (linear density)𝑀

𝐿 = 𝑑𝑚
𝑑𝑥

l. vf = (pxi + pyj) / m1 + m2 (finding speed from 2D momentum)
m. θ= tan-1(py / px) = tan-1(vy / vx) (finding angle from 2D momentum)
n. V = m/s (initial speed of bullet for ballistics pendulum)( 𝑚+𝑀

𝑚 ) 2𝑔𝐿(1 − 𝑐𝑜𝑠Θ)

o. (rocket equation)0 = 𝑚𝑎 − 𝑢 𝑑𝑢
𝑑𝑡

p. (burn in space equation)𝑣
𝑓

− 𝑣
𝑜

=  − 𝑢𝑙𝑛(
𝑚

𝑓

𝑚
𝑜

)

q. (launch from Earth equation)𝑣
𝑓

− 𝑣
𝑜

=  − 𝑢𝑙𝑛(
𝑚

𝑓

𝑚
𝑜

) − 𝑔𝑡

2. Find impact time by setting the unit divided by time
a. 100 bullets/min → 60 seconds/100 bullets = 0.6 sec/bullet
b. Impact type is a “cycle” of having force applied plus not being applied, this cycle starts

again when force is applied again
c. Use this impact time to find Favg using J = Favg * Δt

3. Use Center of Mass to find the final speeds of elastic collisions and displacement of an object
when exploding in midair (exploding projectiles/missiles)



UNIT 6: Rotational Motion
Fundamentals of Unit 6 Physics
Rotational Kinematics : describing rotational motion and how it’s occurring

- Angular position = θ
- Angular velocity = ω = dθ/dt
- Angular acceleration = ⍺ = dω/dt = d2θ/dt2

Rotational Dynamics : why is the rotational motion occurring
- Torque, angular collisions, angular momentum

Right Hand Rule : used to determine the direction of angular quantities
- Angular velocity, acceleration, momentum, torque, etc.
- “Sweep” position vector into force = torque
- “Sweep” position vector in velocity = angular momentum

Torque : the ability of a force to rotate an object about an arbitrary axis of own choice
- τ = I⍺ [N2LR]
- τ = r⟂ x F
- |τ| = |r| |F| sinθ

- θ = angle between r and F vectors
- r = position vector measured from axis of rotation
- F = force

Linear vs Angular Table
Linear Name Linear Transition

Equation
Angular Angular Name

Position x x = rθ θ Angular position

Velocity v v = rω ω Angular velocity

Acceleration a a = r⍺ ⍺ Angular acceleration

Mass m I = fmr2 I Moment of Inertia

Kinetic Energy KE = ½mv2 KEr =
½(fmr2)(v/r)2

KEr = ½Iω2 Kinetic Energy Rotational

Force F = ma
= dp/dt

τ = (mr2)(a/r)
= r * ma
= rsinθ * F
= r⟂ x F

τ = I⍺
= r⟂ x F
= dL/dt

Torque

Work W = FΔx W = τΔθ Work



Power P = dW/dt
= Fv (force constant)

P = dW/dt
= τω (torque constant)

Power

Momentum p = mv L = r x p L = Iω
= r⟂ x p
= r⟂mv

Angular Momentum

Impulse J = Δp ? = ΔL Angular Impulse

Work - KE theorem W = ΔKE
FΔx = ΔKE

W = ΔKEr
τΔθ = ΔKEr

Work - KE rotational
theorem

Impulse - Momentum
Theorem

FΔt = Δp
FΔt = mΔv

τΔt = ΔL
τΔt = IΔω

Angular Impulse -
Momentum Theorem

Angular Kinematics
1. Vf = Vo + at ωf = ωo + ⍺t
2. Δx = Vot + ½at2 Δθ = ωot + ½⍺t2
3. Vf

2 = Vo
2 + 2aΔx ωf

2 = ωo
2 + 2⍺Δθ

Moment of Inertia
Moment of Inertia (kg * m2) : quantitative measure of difficulting in rotating a rigid object or a
collection of masses about an arbitrary axis

- Bigger = harder to move
- Smaller = easier to move
- I = fmr2

- f = shape factor
- Inertias for common objects:
- Ring/Hoop/Thin Cylindrical Shell = MR2 f = 1
- Cylinder/Solid Cylinder/Disk = ½MR2 f = ½
- Solid Sphere = ⅖MR2 f = ⅖
- Shell/Thin Spherical Shell = ⅔MR2 f = ⅔

Parallel Axis Theorem
An easy way to get the new inertia of an object when its axis of rotation changes
Inew = Iold + mD2

Iold = old inertia
m = mass of object
D = distance between old and new axis of rotation

Rotational Kinetic Energy
KEr = ½Iω2

KEr = ½(fmr2)(v/r.)2

KEr = ½fmv2



- There is KEr present if an object is rolling, not slipping
- Essentially linear KE but factors in shape factor

Newton’s Laws of Rotational Motion
N1L : ΣF = 0
N1LR : Στ = 0

N2LR : ΣF = ma
N2LR : Στ = I⍺

Rolling friction
- Generally very small μr = Ffr
- Causes objects to roll
- Still affects acceleration as an object rolls (up or down an incline)

Energy consideration in rotational motion
Work - Kinetic energy theorem

- W = ΔKEr
- τΔθ = ΔKEr

Power from Torque
- P = dW/dt
- P = τω

Conservation of Mechanical Energy in rotational motion
- ΔEmech = 0
- Ugo + Ko + KRo = Ugf + Kf + KRf
- mgh + ½mvo2 + ½Iωo

2 = mgh + ½mvf2 + ½Iωf
2

Rolling motion of a rigid object
Pure rotation

- v’ = rω [Speed of edge of wheel]
- vcm = 0 [Speed of center of wheel]

Pure translation
- v’ = vcm [Speed of edge of wheel is the same as center of wheel]

Pure rolling
- vcm = ds/dt = r * dθ/dt = rω
- v’ = 2vcm = 2rω [Speed of edge of wheel is twice as fast as the center of wheel]

Angular Momentum
- L = r x p = rmv = Iω
- ΔL = τ * t



- Torque changes angular momentum

Conservation of Angular Momentum
- ΔL = 0 Στexternal = dL/dt = 0
- Lo = Lf
- L can be Rmv or Iω

Angular Impulse - Momentum Theorem
- τΔt = ΔL
- τΔt = IΔω

TIPS ON HOW TO SOLVE PROBLEMS:
1. When doing angular momentum problems, use r⟂mv for objects that aren’t rotating but have

angular momentum around a point (ball going towards bar) and use Iω for objects that are
rotating around a point (bar itself)

2. If axis of rotation changes after a collision, write initial quantities in terms of the new axis of
rotation to keep the axis of rotation constant, rather than changing it before and after collision

3. To understand the direction of rotational friction, understand how angular velocity is changing, it
doesn’t always oppose translational motion (friction points up an incline as ball is rolling up)

4. To get acceleration of an object up or down an incline, it’s easier to use parallel axis theorem and
have the gravity acting on COM to be applying torque rather than have rolling friction applying
torque and solving for acceleration



UNIT 7: Oscillations
Fundamentals of Unit 7 Physics
Angular Frequency (ω) [rad/s] : ω is constant for a specific system, not the same as frequency or
angular velocity

- ω = 2πf

Phase constant (𝞅) [rad] : phase angle or “phaser”, tells us when we started counting time and where the
mass was when stopwatch started, no physics is involved with this constant

Amplitude (A) [meters] : location of mass when t = 0 and A = Xmax (why cosine function is better
solution for differential equations)

Frequency (f) [Hz] : oscillations or cycles per second
- f = 1/T

Period (T) [seconds] : time it takes for 1 cycle to be completed
- T = 1/f

Oscillations require solving differential 2nd order equations in order to get x(t)



General Mass-Spring System Simple Pendulum System

ω = 2πf = 2π/T

ω = [rigid pendulum object]𝑑𝑚𝑔
𝐼

𝑃

f = 1/T

f = [rigid pendulum object]1
2π

𝑑𝑚𝑔
𝐼

𝑃

T = 1/f

T = [rigid pendulum object]2π
𝐼

𝑃

𝑑𝑚𝑔

d = distance between pivot/axis of
rotation and COM

Restoring Force: -Fs = -kΔx

ω = 𝑘
𝑚

f = 1
2π

𝑘
𝑚

T = 2π 𝑚
𝑘

x(t) = Xmaxcos(ωt + 𝞅)
v(t) = -Xmaxωsin(ωt + 𝞅)
v(t) = -Xmaxω2cos(ωt + 𝞅)

Total Energy = Emech = ½kXmax
2 = ½mVmax

2

v(x) = ω 𝐴2 − 𝑥2

Vmax = A = Xmax = Xmaxω ω 𝑘
𝑚

amax= Vmaxω

Restoring Force: -mgsinθ

ω = 𝑔
𝐿

f = 1
2π

𝑔
𝐿

T = 2π 𝐿
𝑔

θ <= 5˚ (small angle approx sinθ = θ)
x(t) = θmaxcos(ωt + 𝞅)
v(t) = -θmaxωsin(ωt + 𝞅)
v(t) = -θmaxω2cos(ωt + 𝞅)

Common periods for different pendulum objects:

Uniform rod pivoting @ an end: T = 2π 2𝐿
3𝑔

Uniform loop pivoting @ circumference: T = 2π 3𝑟
2𝑔

Uniform ring pivoting @ circumference: T = 2π 2𝑟
𝑔

Damped Oscillations
Damping Coefficient (b) : constant

- Buoyancy force always opposes motion

Damped Oscillations : oscillations that slowly dissipate until it stops oscillating
- Equation of Motion

- 𝑥(𝑡) =  𝐴𝑒
−( 𝑏

2𝑚 )𝑡
𝑐𝑜𝑠(ω𝑡 + 𝞅) 

- =ω ω
𝑜
2 + ( 𝑏

2𝑚 )2

- b = damping coefficient
- m = mass of object oscillating
- = angular frequencyω



- o = natural frequency of system =ω 𝑘
𝑚

Underdamped System Overdamped (Critically Damped) System

o =ω 𝑘
𝑚

o >ω 𝑏
2𝑚

o =ω 𝑘
𝑚

o <ω 𝑏
2𝑚

Torsional Pendulum

Setup - twisting the pendulum, releasing it, and measuring the period (change in direction to change in
direction)

θ(t) = θmaxcos(ωt + 𝞅)

ω = 𝛫
𝐼  

- K = kappa = torsional constant of the wire
- Depends on material, length, cross-sectional diameter

f = 1
2π

𝐾
𝐼

T = 2π 𝐼
𝐾

Forced Oscillation and Resonance



Imposed Frequency : a frequency imposed onto a system
- Moving a mass on a spring up and down then letting go to allow it to oscillate by itself
- Focos(ωt) = periodic frequency forced upon system

DON’T CONFUSE OMEGAS
ω = imposed frequency

ωo = natural frequency =
𝑘
𝑚

A = displacement from equilibrium
Fo = imposed force
m = mass of object

Equation of Motion:

A(ω) =
𝐹

𝑜
 / 𝑚

( 𝑘
𝑚  − ω2)

A(ω) =
𝐹

𝑜
 / 𝑚

(ω
𝑜
2 − ω2)

Case 1: imposed frequency is much smaller than the natural frequency
If << o then o

2 - 2 = o
2ω ω ω ω ω

A(ω) = = =
𝐹

𝑜
 / 𝑚

ω
𝑜
2

𝐹
𝑜

𝑚 *  𝑚
𝑘

𝐹
𝑜

𝑘

A approaches
𝐹

𝑜

𝑘

Case 2: imposed frequency is much larger than the natural frequency
If >> o then → ∞ω ω ω

A(ω) = as → ∞
𝐹

𝑜
 / 𝑚

(ω
𝑜
2 − ω2)

ω

A(ω) → 0

A approaches 0

Case 3: imposed frequency equals natural frequency and the resonance phenomenon is reached
If == oω ω

A(ω) = =
𝐹

𝑜
 / 𝑚

(ω
𝑜
2 − ω2)

𝐹
𝑜
 / 𝑚

0

A(ω) → ∞

A approaches ∞ but it can’t, so the object breaks
- Ex: breaking wine glass with voice using resonant frequency



TIPS ON HOW TO SOLVE PROBLEMS:
1. List out all your knowns and try to find any unknown using the general equations

a. ω = 2πf, f = 1/T, T = 1/f
2. Understand the difference between angular frequency, natural frequency, and imposed frequency
3. Might be helpful to memorize angular frequencies for common objects and scenarios



UNIT 8: Gravitation
Fundamentals of Unit 8 Physics
Newton’s Gravitational Law :

- Fg =
𝐺𝑚

1
𝑚

2

𝑟2

- G = 6.67 x 10-11 N * m2 / kg2

- r = distance between m1 and m2

- Only applied to point masses
- All masses apply a gravitational force on all other masses

Gravitational Potential Energy
Ug(r) =

−𝐺𝑚
1
𝑚

2

𝑟

[negative indicates that energy is REQUIRED to place mass m1 at “r” distance away from mass m2]

Energy of Assembled Masses
- It takes no work to place a mass in an empty space (no other masses present)

- The next mass placed will take amount of work to place the second mass
−𝐺𝑚

1
𝑚

2

𝑟

- The next mass placed will take amount of work from the first and second mass to place
−𝐺𝑚

1
𝑚

2

𝑟

the third mass
- The sum of all works is Total Binding Energy of the System

Mechanical Energy of a Star Planet System
Emech = Ug + K = + ½mv2

−𝐺𝑚
1
𝑚

2

𝑟

Fg = Fc [Force of gravity is centripetal force holding planet in orbit]

= [m2 mass of planet]
𝐺𝑚

1
𝑚

2

𝑟2

𝑚
2
𝑣2

𝑟

= m2v2 [simplify to mv2]
−𝐺𝑚

1
𝑚

2

𝑟

Emech = + [Substitute into Emech for mv2]
−𝐺𝑚

1
𝑚

2

𝑟

𝐺𝑚
1
𝑚

2

2𝑟

Emech = [Binding energy of a star-planet system, energy required to free planet
−𝐺𝑚

1
𝑚

2

2𝑟

from orbit]
[r = radius or semi-major axis if orbit isn’t elliptical]



Escape Velocity
- Using Conservation of Mechanical Energy, we can find velocity needed to escape Earth’s gravity
- Assume:

- Ug = 0 at infinity distance away from Earth
- The object ends with 0 velocity in space

ΔEmech = 0
Ugo + Ko = Ugf + K

+ ½mvesc2 = 0 + 0
−𝐺𝑚

1
𝑚

2

𝑟

½m2vesc2 =
𝐺𝑚

1
𝑚

2

𝑟

vesc = [m1 = mass of planet, r = radius of planet]
2𝐺𝑚

1

𝑟

Vesc for Earth is 11.2 km/s, spaceships need to exceed this at one point in order to enter space

Kepler’s Laws of Planetary Motion
Kepler’s 1st Law : All planets orbit their star in an elliptical path, with the star located at one of the foci
of the elliptical orbit

Kepler’s 2nd Law : an imaginary line drawn from the center of the star to the center of its planet sweets
equal area in space in equal time intervals

- dA/dt = L/2m [rate of change = constant value]

Kepler’s 3rd Law : the square of a planet’s period around it star is directly proportional to the cubed of
the semi-major axis of the planet’s orbit

- T2∝ a3 [elliptical orbit]
- T2∝ r3 [circular orbit]
- Fg = Fc and v = 2πr / T

- [Ms = mass of sun, = kepler’s constant]( 4π2

𝐺𝑀
𝑠

) 𝑟3 =  𝑇2 ( 4π2

𝐺𝑀
𝑠

)

Spy/weather Satellites and Communication/Geosynchronous Satellites
( 4π2

𝐺𝑀
𝑠

) 𝑟3 =  𝑇2

- “r” can be found
- Altitude can then be found
- “V” or speed can be found with v = 2πr / T

A satellite is geosynchronous if its period is 24 hours long, stays in same place relative to Earth’s surface



TIPS ON HOW TO SOLVE PROBLEMS:
1. For objects far from planet surface, set Ug = 0 at center of the planet or at infinity distance away,

who knows why we can’t just set Ug = 0 at the planet’s surface


