
AP Physics C: Electricity &
Magnetism Review

AP-Physics C: Maxwell’s Equations

1. Gauss’ Law ( )∮ 𝐸 • 𝑑𝐴 =
𝑞

𝑒𝑛𝑐

ϵ
𝑜

2. Ampere’s Law ( )∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

3. Gauss’ Law for Magnetism ( )∮ 𝐵 • 𝑑𝐴 = 0

4. Faraday’s Law ( )ε =−
𝑑Φ

𝐵

𝑑𝑡 = ∮ 𝐸 • 𝑑𝑠

Types of Error (in labs)
1. System Error

Materials, Air Resistance, Friction
2.Mathematical Error
Truncating, Calculation error
3.Observational Error

Parallax, Reaction time, measuring distance
Made by Nathan Liow



UNIT 1: Electrostatics
Fundamentals of Unit 1 Physics
Atom : smallest particle of an element that maintains all the properties of that element

- Consists of:
- Electron (negative charge)
- Proton (positive charge)
- Neutron (neutral charge)

- Neutral charge = equal number of electrons and protons
- Negative charge = more electrons than protons (electron excess)
- Positive charge = less electrons than protons (electron deficient)
- ONLY ADDING OR REMOVING ELECTRONS

Electron flow : flow of electrons between two objects until a charge equilibrium is reached, when charges
on both objects are equal

Fundamental Charge Unit (FCU) : an amount of charge on one electron or one proton
- Macrocharge units are coulombs (C)
- 1 FCU = 1.6 x 10-19 C
- 1 FCU = 1 e
- e- = electron, e+ = proton

Atomic Mass Unit (AMU) : mass of a proton
- Macro mass units are kilograms (kg)
- 1 AMU = 1.67 x 10-27 kg

R hat (ȓ) : unit vector in the radial direction. It always points away from the point charge regardless of
the point charge’s polarity.

- +ȓ = radially outward
- -ȓ = radially inward
- ȓ = cosθ (î) + sinθ (ĵ)

- |ȓ| = = 1 (definition of a unit vector)𝑐𝑜𝑠2θ (î) +  𝑠𝑖𝑛2θ (ĵ)

Opposite charges attract while like charges repel

Positive or negative charge doesn’t indicate a positive or negative number, DO NOT use negative
numbers in equations like Coulomb’s Law. They only indicate the polarity of charge which is used to
determine if there’s repulsion or attraction.

Linear Charge Density (λ - Lambda) : constant LINEAR density for a uniformly charged distribution
- λ = = = [C/m]𝑐ℎ𝑎𝑟𝑔𝑒

𝑙𝑒𝑛𝑔𝑡ℎ
𝑄
𝐿

𝑑𝑞
𝑑𝑥

- Lambda =Linear
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Surface Charge Density (𝜎 - sigma) : constant SURFACE density for a uniformly charged distribution
- 𝜎 = = = [C/m2]𝑐ℎ𝑎𝑟𝑔𝑒

𝑎𝑟𝑒𝑎
𝑄
𝐴

𝑑𝑞
𝑑𝐴

- Sigma = Surface

Charging Objects
1. Charging by friction (formication)

- Rubbing two materials together where the materials are on opposite sides of the
triboelectric series (one material is positive while the other is negative)

- Rubbing rabbit fur and PVC pipe

2. Charging by conduction
Conductor Material Types:

1. Conductors are usually metals (many free electrons)
2. Insulators are usually nonmetals (no free electrons)
3. Semiconductors (some free electrons, not important in Physics C: E&M)

If a conducting object is charged by conduction, then the charges will be uniformly distributed on
the surface due to free electrons allowing charges to move

- Ex: Charging metal sphere with rod
If an insulating object is charged by conduction, then the charges will be localized at the point of
contact on the surface due to no free electrons for charges to move

- Ex: Charging wooden sphere with rod

3. Charging by induction
No physical contact is required between charged objects, mostly occurs on metals

- Ex: Negatively charged rod near neutral ball connected to metal leaves will cause
electrons in ball to flow towards leaves where they will repel each other

4. Charging by polarization
Occurs mostly between nonmetals (insulators) and when atoms become polarized (one side has a
partial positive charge while the other has a partial negative charge) due to electrons attracting to
one side of an atom

- Ex: Positively charged balloon near wall attracts electrons from the wall, causing surface
atoms to be polarized which gives the atom a slight dipole. This allows the balloon to
stick to the wall.

Law of Conservation of Charges (LCC)
Charges are never created, only separated

Coulomb’s Law
The electrostatic force between 2 point charges is directly proportional to the product of the magnitude of
each charge and inversely proportional to the square of the distance between them
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- Fe∝ q1q2
- Fe∝ 1 / r2

- Fe∝
𝑞

1
𝑞

2

𝑟2

- Fe =
𝐾

𝑒
𝑞

1
𝑞

2

𝑟2

- q1 = point charge 1 [coulombs]
- q2 = point charge 2 [coulombs]
- r = distance between point charges [meters]
- Ke = electrostatic constant / coulomb’s constant = 9 x 109 N m2 / C2

- Ke =
1

4πε
𝑜

- o [epsilon] = permittivity of free space or vacuum permittivityε

Finding net force and equilibrium point of point charges
Net force for multiple point charges:

1. Understand which charges are attractive and which are repulsive
2. Create a free body diagram of the charge
3. Solve for net force, use components and unit vectors if necessary

Equilibrium point for a point charge between multiple point charges:
1. Understand where the point charge can physically be or not be

a. Consider the directions of repulsive and attractive forces (have to balance out to 0)
b. Doesn’t always have to be between two (or more) point charges

2. Solve for distance by setting electrostatic forces equal to 0 in all directions
3. General Rule of Thumb: Equilibirum point will always be closer to smaller charge

a. Small distance offsets the smaller charge to balance out greater charge

Applying FCU and AMU to prove an unintuitive idea
Background: Scientist claims that if two people standing at arms length (1m) had 1% greater charge, the
electrostatic force between them is enough to lift the Earth

- Mass of Earth: 6 x 1024

- FCU: 1.6 x 10-19C
- AMU: 1.67 x 10-27 kg
- Each person weighs about 82 kg
- Distance between the persons: 1 m

82 𝑘𝑔 •  1 𝑝𝑟𝑜𝑡𝑜𝑛

1.67 𝑥 10−27 𝑘𝑔
 •  1.6 𝑥 10−19 𝐶 

1 𝑝𝑟𝑜𝑡𝑜𝑛  •  1%
100%  =  3. 92 𝑥 107 𝐶 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑠𝑜𝑛

Fe = =
𝐾

𝑒
𝑞

1
𝑞

2

𝑟2 =  (9 𝑥 109)(3.92 𝑥 107)(3.92 𝑥 107)

12 1. 389 𝑥 1025 𝑁

Fe = ma → a = Fe / m
a = 1.389 x 1025 / 6 x 1024 = 2.315 m/s2 (moving = lifted)
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Electric Field or Electrostatic Field

Field : JUST a function in higher dimensions

Electric Field / Electrostatic Field (E) [N / C] : a property of space around a particular charge (Q) in
such a way that if a positive test charge (qo) is placed near this original charge, the test charge will feel a
force

- Test charge (qo) is always positive
- Vector quantity denoted with E
- Measure of force per unit of test charge [N / C]

Fe =
𝐾

𝑒
𝑞

𝑜
𝑄

𝑟2

E = = (+ȓ)
𝐹

𝑒

𝑞
𝑜

𝐾
𝑒
𝑄

𝑟2

- E = electric field due to a point charge Q at a distance r
away from Q

- ȓ = unit vector in direction of force
- Would be -ȓ if charge was -Q (attracted)

Drawing Electric Field Lines around a charge

Electric field lines only
show direction, not
magnitude

Electric field lines points away Electric field lines points inward
from a positive charge toward a negative charge
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Drawing Electric Field Vectors around a charge

Electric field vectors show direction
and magnitude

- Magnitude decreases as
distance increases

- Magnitude varies at 1/r2

+ȓ = radially outward -ȓ = radially inward

Problem Solving: Electric Field due to electric dipole
1. Solving for the electric field at a specific location (point P) when point P is located on the

axis of the dipole

E+ = Electric field from +q E- = Electric field from -q

E+ = (+î) E- = (-î) [establish E equations]
𝐾

𝑒
𝑞

(𝑥−𝑎)2

𝐾
𝑒
𝑞

(𝑥+𝑎)2

Ep = E+ + E- [superimposing E]

Ep = - [substitute E+ and E-]
𝐾

𝑒
𝑞

(𝑥−𝑎)2

𝐾
𝑒
𝑞

(𝑥+𝑎)2

Ep = (+î) [simplify with algebra]
4𝐾

𝑒
𝑞𝑎𝑥

(𝑥2−𝑎2)
2

(+î makes sense because the repulsive electric field from +q is stronger as +q is closer to point P)

Extreme Case:
If x >> a, then x2 - a2 = x2

Ep = = =
4𝐾

𝑒
𝑞𝑎𝑥

(𝑥2)
2

4𝐾
𝑒
𝑞𝑎𝑥

𝑥4

4𝐾
𝑒
𝑞𝑎

𝑥3
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Ep∝ → Electric field varies by distance away from the electric dipole1

𝑥3
1

𝑟3

2. Solving for the electric field at a specific location (point P) when point P is located on the
perpendicular bisector axis of the dipole

y-components cancel
x-components superimposed
(added) to find Ep

E+ = Electric field from +q E- = Electric field from -q r = 𝑎2 + 𝑦2

E+ = E- = cosθ = =
𝐾

𝑒
𝑞

𝑟2

𝐾
𝑒
𝑞

𝑟2
𝑎
𝑟

𝑎

𝑎2+𝑦2

Ep = E+ + E- = E+x + E-x [general equation]

Ep = cosθ + cosθ (-î) [substitute x-component with cosine]
𝐾

𝑒
𝑞

𝑟2

𝐾
𝑒
𝑞

𝑟2

Ep = + (-î) [substitute cosine with side ratios]
𝐾

𝑒
𝑞

𝑟2 * 𝑎

𝑎2+𝑦2

𝐾
𝑒
𝑞

𝑟2 * 𝑎

𝑎2+𝑦2

Ep = (-î) [simplify with algebra]
2𝐾

𝑒
𝑞𝑎

(𝑎2+𝑦2)
3/2

(-î makes sense because there are only negative x-components from the electric field acting on point P)

Extreme Case:
If y >> a, then a2 + y2 = y2

Ep = = =
2𝐾

𝑒
𝑞𝑎

(𝑎2+𝑦2)
3/2

2𝐾
𝑒
𝑞𝑎

(𝑦2)
3/2

2𝐾
𝑒
𝑞𝑎

𝑦3

Ep∝ → Electric field varies by distance away from the electric1

𝑦3
1

𝑟3

dipole

Summary
Steps:

1. Find all electric fields due to point charges acting on point P, use FBD if needed
2. Determine if any electric fields cancel out
3. Calculate the electric field from all point charges, may include trigonometry
4. Add all electric fields from all charges (superimposing)
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Ep∝ → Electric field varies by distance away from the electric dipole1

𝑟3
1

𝑟3

Point Charges Electric Dipole
(2 point charges with opposite polarity)

|E(r)| =
𝐾

𝑒
𝑞

𝑟2

Ep∝
1

𝑟2

Electric field (E) varies at 1

𝑟2

|E(r)| = or (look above)
4𝐾

𝑒
𝑞𝑎

𝑥3

2𝐾
𝑒
𝑞𝑎

𝑦3

Ep∝
1

𝑟3

Electric field (E) varies at 1

𝑟3

Problem Solving: Electric Field due to uniform charge distribution (rod)
1. Solving for the electric field at a specific location (point P) when point P is located on the

axis of the uniform charge distribution (rod)

dx = small length of rod with dq charge
dq = point charge
Q = total charge of rod
Ep = electric field @ point p
dEp = differential electric field @ point p
λ = linear charge density of rod [ ]𝑐ℎ𝑎𝑟𝑔𝑒

𝑙𝑒𝑛𝑔𝑡ℎ

λ = = → dq = λdx𝑄
𝐿

𝑑𝑞
𝑑𝑥

Ep = (-î) [general equation]
𝐾

𝑒
𝑞

𝑟2

dEp = (-î) [turn equation into differential]
𝐾

𝑒
𝑑𝑞

𝑥2
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dEp = [substitute dq with lambda]
𝐾

𝑒
λ𝑑𝑥

𝑥2

[integrate dEp with limits of rod]
𝑎

𝑎+𝐿

∫ 𝑑𝐸
𝑝

=
𝑎

𝑎+𝐿

∫
𝐾

𝑒
λ

𝑥2 𝑑𝑥

Ep = Keλ (-x-1) |aa+L [evaluate with limits]
Ep = [substitute x with limits]𝐾

𝑒
λ[− 1

𝑎+𝐿 + 1
𝑎 ]

Ep= (-î) [simplified with algebra]
𝐾

𝑒
𝑄

𝑎(𝑎+𝐿)

Extreme Cases:
If a >> L, then a + L = a

Ep = = =
𝐾

𝑒
𝑄

𝑎(𝑎+𝐿)

𝐾
𝑒
𝑄

𝑎(𝑎)

𝐾
𝑒
𝑄

𝑎2

[proves Coulomb’s Law, if distance is far from rod, rod appears as point charge]

If a << L, then a + L = L

Ep = = =
𝐾

𝑒
𝑄

𝑎(𝑎+𝐿)

𝐾
𝑒
𝑄

𝑎(𝐿)

𝐾
𝑒
𝑄

𝑎𝐿

[doesn’t prove Coulomb’s Law but maintains meters2 in denominator, units stay consistent]

2. Solving for the electric field at a specific location (point P) when point P is located on the
perpendicular bisector axis of the uniform charge distribution (rod)

dx = small length of rod with dq charge
dq = point charge
Q = total charge of rod
dEp = differential electric field @ point p
λ = linear charge density of rod [ ]𝑐ℎ𝑎𝑟𝑔𝑒

𝑙𝑒𝑛𝑔𝑡ℎ

λ = = → dq = λdx𝑄
𝐿

𝑑𝑞
𝑑𝑥

ȓ = direction of dEp

ȓ = cosθ (î) + sinθ (ĵ)

|ȓ| = = 1𝑐𝑜𝑠2θ (î) +  𝑠𝑖𝑛2θ (ĵ)

Ep = (ȓ) [general equation]
𝐾

𝑒
𝑞

𝑟2

dEp = (ȓ) [turn Ep into differential]
𝐾

𝑒
𝑑𝑞

𝑟2

dEp = cosθ (î) + sinθ (ĵ) [convert ȓ into î and ĵ or x and y]
𝐾

𝑒
𝑑𝑞

𝑟2

𝐾
𝑒
𝑑𝑞

𝑟2

dEp = cosθ (î) + sinθ (ĵ) [substitute dq and r2]
𝐾

𝑒
λ𝑑𝑥

𝑥2+𝑎2

𝐾
𝑒
λ𝑑𝑥

𝑥2+𝑎2

dEp = (î) + (ĵ) [convert cosθ and sinθ into ratios]
𝐾

𝑒
λ𝑑𝑥

𝑥2+𝑎2 * −𝑥

𝑥2+𝑎2

𝐾
𝑒
λ𝑑𝑥

𝑥2+𝑎2 * 𝑎

𝑥2+𝑎2
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dEp = (î) + (ĵ) (differential for Ep at location p for a charged rod)−
𝐾

𝑒
λ𝑥𝑑𝑥

(𝑥2+𝑎2)3/2

𝐾
𝑒
λ𝑎𝑑𝑥

(𝑥2+𝑎2)3/2

dEp = (î) + (ĵ) [integrate and applying limits]
−𝐿/2

𝐿/2

∫ −
−𝐿/2

𝐿/2

∫
𝐾

𝑒
λ𝑥𝑑𝑥

(𝑥2+𝑎2)3/2
−𝐿/2

𝐿/2

∫
𝐾

𝑒
λ𝑎𝑑𝑥

(𝑥2+𝑎2)3/2

x-component y-component

Epx = (î) [general eq.]−
−𝐿/2

𝐿/2

∫
𝐾

𝑒
λ𝑥𝑑𝑥

(𝑥2+𝑎2)3/2

Epx = (î) [move constants]− 𝐾
𝑒
λ

−𝐿/2

𝐿/2

∫ 𝑥

(𝑥2+𝑎2)3/2 𝑑𝑥

Epx = [u-sub, u = x2 + a2]−
𝐾

𝑒
λ

2 ∫ 1

𝑢3/2 𝑑𝑢

Epx = [integrate and simplify]−
𝐾

𝑒
λ

2 * −2

𝑢1/2

Epx = [sub for u and reapply limits]
𝐾

𝑒
λ

𝑥2+𝑎2
|

−𝐿/2
𝐿/2

Epx = 0 [simplify with algebra and solve]

Epy = (ĵ) [general eq.]
−𝐿/2

𝐿/2

∫
𝐾

𝑒
λ𝑎𝑑𝑥

(𝑥2+𝑎2)3/2

Epy = (ĵ) [move constants]𝐾
𝑒
λ𝑎

−𝐿/2

𝐿/2

∫ 𝑑𝑥

(𝑥2+𝑎2)3/2

Epy = [integrate]𝐾
𝑒
λ𝑎[ 𝑥

𝑎2(𝑥2+𝑎2)1/2 ]
−𝐿/2
𝐿/2

Epy = [apply limits and simplify]
𝐾

𝑒
λ𝐿

𝑎( 𝐿2

4 +𝑎2)1/2

Epy = (ĵ) [sub lambda for Q/L]
𝐾

𝑒
𝑄

𝑎( 𝐿2

4 +𝑎2)1/2

Ep = Epy = Epy = (ĵ)
𝐾

𝑒
𝑄

𝑎( 𝐿2

4 +𝑎2)1/2

Extreme Cases:

If a >> L, then + a2 = a2𝐿2

4

Ep = = =
𝐾

𝑒
𝑄

𝑎( 𝐿2

4 +𝑎2)1/2

𝐾
𝑒
𝑄

𝑎(𝑎2)1/2

𝐾
𝑒
𝑄

𝑎2

[proves Coulomb’s Law]

If a << L, then + a =𝐿2

4
𝐿2

4

Ep = = = = (all constants)
𝐾

𝑒
𝑄

𝑎( 𝐿2

4 )1/2

𝐾
𝑒
𝑄

𝑎(𝐿/2)

2𝐾
𝑒
𝑄

𝑎𝐿

2𝐾
𝑒
λ

𝑎

[doesn’t prove Coulomb’s Law, if close to rod then Ep stays constant]

Summary
Steps:

1. Convert Ep = into a differential and substitute with linear charge density (λ)
𝐾

𝑒
𝑞

𝑟2

2. If dEp is in ȓ direction, convert to x (î) and y (ĵ) using sinθ and cosθ
a. If you have side lengths, change sinθ and cosθ into respective ratios

3. Integrate dEp and apply limits to get Ep

a. May require U-Substitution, magic table, and combining fractions

9



Problem Solving: Electric Field due to uniform charge distribution (ring)

λ = =𝑄
2π𝑅

𝑑𝑞
𝑑𝑠

dq = λds
ds = Rdθ
dq = λRdθ

r = 𝑧2 +  𝑅2 

Realize:
- X and Y components will cancel while only z-components will survive
- Ep will be 0 at the center of the ring, 0 distance away from the center along the ring’s axis (z=0)

Ep = (ȓ) [general equation]
𝐾

𝑒
𝑞

𝑟2

dEp = (ȓ) [turn Ep into differential]
𝐾

𝑒
𝑑𝑞

𝑟2

dEp = cos𝜑 (ǩ) [convert ȓ into ǩ or z]
𝐾

𝑒
𝑑𝑞

𝑟2

dEp = cos𝜑 (ǩ) [convert dq and r2]
𝐾

𝑒
λ𝑅𝑑θ

𝑧2+𝑅2

dEp = (ǩ) [convert cos𝜑 into ratio]
𝐾

𝑒
λ𝑅𝑑θ

𝑧2+𝑅2 * 𝑧

𝑧2+𝑅2

(differential eq. for Ep at location p away from ring’s center along its axis for a charged ring)

dEp = (ǩ)
𝐾

𝑒
λ𝑅𝑧𝑑θ

(𝑧2+𝑅2)3/2

Ep = = (ǩ) [integrate, apply limits around ring, and move constants]
0

2π

∫ 𝑑𝐸
𝑝

𝐾
𝑒
λ𝑅𝑧

0

2π

∫ 𝑑θ

(𝑧2+𝑅2)3/2

Ep = (ǩ) [evaluate]
2π𝐾

𝑒
λ𝑅𝑧

(𝑧2+𝑅2)3/2

Ep = (ǩ) [simplify and replace lambda]
𝐾

𝑒
𝑄𝑧

(𝑧2+𝑅2)3/2

Extreme Cases:
If z == 0, then location at center of ring

Ep = = 0 N/C
𝐾

𝑒
𝑄𝑧

(𝑧2+𝑅2)3/2

[proves Ep = 0 at center of ring]

If z >> R, then z2 + R2 = z2, ring is essentially a point charge

Ep = = = =
𝐾

𝑒
𝑄𝑧

(𝑧2+𝑅2)3/2

𝐾
𝑒
𝑄𝑧

(𝑧2)3/2

𝐾
𝑒
𝑄𝑧

𝑧3

𝐾
𝑒
𝑄

𝑧2
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[proves Coulomb’s Law as ring is essentially a point charge]

Summary
Steps:

1. Convert Ep = into a differential and substitute with linear charge density (λ)
𝐾

𝑒
𝑞

𝑟2

2. If dEp is in ȓ direction, convert to z (ǩ) using cos𝜑 (or surviving components only)
3. Integrate dEp and apply limits of the entire ring (0 to 2π) to get Ep

b. May require U-Substitution, magic table, and combining fractions

- Ep doesn’t always decrease as location P gets farther
from the center of the ring/disk

- Graph represents how Ep varies as a function of z
(distance from the center of ring/disk)

Problem Solving: Electric Field due to uniform charge distribution (disk)

(converting ȓ) (density relationship) (area relationship)

d = 𝜎 = = = A = b * h𝑧2 +  𝑟2 𝑄

π𝑅2
𝑑𝑞
𝑑𝐴

𝑑𝑞
𝑟𝑑θ𝑑𝑟

cos𝜑 = = dq = 𝜎rdθdr dA = rdθdr𝑧
𝑑

𝑧

𝑧2 + 𝑟2 

Realize:
- X and Y components will cancel while only z-components will survive
- Ep will be 0 at the center of the disk, 0 distance away from the center along the disk’s axis (z=0)

Ep = (ȓ) [general equation]
𝐾

𝑒
𝑞

𝑟2

dEp = (ȓ) [turn Ep into differential]
𝐾

𝑒
𝑑𝑞

𝑟2

dEp = cos𝜑 (ǩ) [convert ȓ into ǩ or z]
𝐾

𝑒
𝑑𝑞

𝑟2

dEp = cos𝜑 (ǩ) [convert dq and r2]
𝐾

𝑒
𝜎𝑟𝑑θ𝑑𝑟

𝑧2+𝑟2

dEp = (ǩ) [convert cos𝜑 into ratio]
𝐾

𝑒
𝜎𝑟𝑑θ𝑑𝑟

𝑧2+𝑟2 * 𝑧

𝑧2+𝑟2
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(differential eq. for Ep at location p away from ring’s center along its axis for a charged disk)

dEp = (ǩ)
𝐾

𝑒
𝜎𝑟𝑧𝑑θ𝑑𝑟

(𝑧2+𝑟2)3/2

Ep = = (ǩ) [apply limits around disk and move constants]
0

𝑅

∫
0

2π

∫ 𝑑𝐸
𝑝

𝐾
𝑒
𝜎𝑧

0

𝑅

∫
0

2π

∫ 𝑟𝑑θ𝑑𝑟

(𝑧2+𝑟2)3/2

Ep = (ǩ) [split integrals to handle respective domains]𝐾
𝑒
𝜎𝑧

0

𝑅

∫ 𝑟𝑑𝑟

(𝑧2+𝑟2)3/2
0

2π

∫ 𝑑θ

Ep = = (ǩ) [evaluate integral and move constant (2π)]𝐾
𝑒
𝜎𝑧

0

𝑅

∫ 𝑟𝑑𝑟

(𝑧2+𝑟2)3/2 (2π) 2π𝐾
𝑒
𝜎𝑧

0

𝑅

∫ 𝑟𝑑𝑟

(𝑧2+𝑟2)3/2 θ

Ep = 0
R (ǩ) [integrate r integral and apply limits]2π𝐾

𝑒
𝜎𝑧[ −1

(𝑧2+𝑟2)1/2 ]

Ep = (ǩ) [evaluate r integral]2π𝐾
𝑒
𝜎𝑧[ −1

(𝑧2+𝑅2)1/2 + 1
𝑧 ]

Ep = (ǩ) [simplify with algebra]2π𝐾
𝑒
𝜎𝑧( 𝑧2+𝑅2−𝑧

𝑧 𝑧2+𝑅2
)

Extreme Cases:
If z == 0, then at location P at center of disk

Ep = = 0 N/C (ǩ)2π𝐾
𝑒
𝜎𝑧( 𝑧2+𝑅2−𝑧

𝑧 𝑧2+𝑅2
)

[proves Ep = 0 at center of disk]

If z >> R, then z2 + R2 = z2, disk is essentially a point charge

Ep = ) = = (ǩ)2π𝐾
𝑒
𝜎𝑧( 𝑧2+𝑅2−𝑧

𝑧 𝑧2+𝑅2
2π𝐾

𝑒
𝜎𝑧( 𝑧2−𝑧

𝑧 𝑧2
) 2π𝐾

𝑒
𝜎𝑧( 𝑧−𝑧

𝑧2 )

Ep = (ǩ)
𝐾

𝑒
𝑄

𝑧2

[proves Coulomb Law]

Summary
Steps:

1. Convert Ep = into a differential and substitute with linear charge density (λ)
𝐾

𝑒
𝑞

𝑟2

2. If dEp is in ȓ direction, convert to z (ǩ) using cos𝜑 (or surviving components only)
3. Integrate dEp twice for d and dr and apply limits of the entire disk (0 to 2π and 0 to R) to get Epθ

c. May require U-Substitution, magic table, and combining fractions

Applications of Electric Field
Motion of charged particles in a uniform electric field which are created using infinite sheets of charges

Uniform E-Field
[Capacitor]
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Use kinematics to find Vo, Vf, a, t, and Δx of a particle beamed into a uniform electric field.
- Remember:

- E = Fe/q
- Fe = Eq = ma

TIPS ON HOW TO SOLVE PROBLEMS:
1. IMPORTANT EQUATIONS/CONSTANTS

a. Fe =
𝐾

𝑒
𝑞

1
𝑞

2

𝑟2

b. Ep =
𝐾

𝑒
𝑞

𝑟2

c. ȓ = cosθ (î) + sinθ (ĵ)
d. λ = = =𝑐ℎ𝑎𝑟𝑔𝑒

𝑙𝑒𝑛𝑔𝑡ℎ
𝑄
𝐿

𝑑𝑞
𝑑𝑥

e. dEp = (î) + (ĵ) [differential eq. ONLY for uniformly charged rod]−
𝐾

𝑒
λ𝑥𝑑𝑥

(𝑥2+𝑎2)3/2

𝐾
𝑒
λ𝑎𝑑𝑥

(𝑥2+𝑎2)3/2

f. Ke = 9 x 109 N m2 / C2

g. FCU: 1.6 x 10-19C
h. AMU: 1.67 x 10-27 kg

2. List of useful integrals: (a = constant)

a. = (used in bisector axis of charged rod in x-direction)∫ 𝑥

(𝑥2+𝑎2)3/2 𝑑𝑥 1

(𝑥2+𝑎2)1/2

b. = (used in bisector axis of charged rod in y-direction)∫ 𝑑𝑥

(𝑥2+𝑎2)3/2
𝑥

𝑎2(𝑥2+𝑎2)1/2

c. = (used in charged disk)∫ 𝑟𝑑𝑟

(𝑎2+𝑟2)3/2
−1

(𝑎2+𝑟2)1/2

3. General Process for problem-solving electric field questions at a location (P)
a. Determine the direction of Ep conceptually (this can rule out directions that cancel)
b. Determine density relationships and any trigonometry required like sin/cos
c. Differentiate Ep to replace dq and r2 (sometimes you might not need to)
d. Change ȓ into directions where Ep exists using sin/cos and trigonometric relationships

from step b
e. Combine, multiply, and simplify to obtain differential equation
f. Integrate within respective domains, may have 2+ integrals for each domain (see disk

example)
g. Simplify with algebra
h. If prompted, substitute the variable with the value given

4. If the sides of a triangle are known, don’t solve for θ and use sine and cosine
a. Remember sinθ = opposite / hypotenuse
b. Remember cosθ = adjacent / hypotenuse

5. Positive or negative charge doesn’t indicate a positive or negative number, DO NOT use negative
numbers in equations like Coulomb’s Law. They only indicate the polarity of charge which is
used to determine if there’s a repulsion or attraction.

6. Equilibrium point will always be closer to smaller charge

13



a. Small distance offsets the smaller charge to balance out the greater charge
7. Extreme case is only when some variable is much larger than another variable which makes

addition/subtraction obsolete, it is NOT the same as when the variable equals a set value
8. Solving particles in uniform electric fields is practically solving projectile motion problems with

kinematics

14



UNIT 2: Electrostatics (Gauss’ Law)
Fundamentals of Unit 2 Physics
Vector Flux (Φ - Phi) : a scalar quantity of a vector field that is passing through a surface

Electric Field Flux(Φ - Phi) [N m2 / C] : a scalar quantity of an electric field that is passing through a
surface

- Dot product between Electric Field and Area
- Φ = E * A = |E||A|cosθ

- θ = angle between E and A
- Flux depends on:

- Magnitude of E
- Bigger field = larger flux

- Area of the surface
- Larger area = larger flux

- Angle between area vector and electric field vector
- More perpendicular = larger flux

- Flux due to a constant electric field through a closed surface (sphere, cube, cylinder) is ALWAYS
0

Area vector : perpendicular vector to a surface’s plane, similar concept to area under the curve (integral)
- Always points outward on a closed surface

Electrostatic Constant / Coulomb’s Constant (Ke) : universal constant
- Ke = = 9 x 109 N m2 / C21

4πε
𝑜

Permittivity of Free Space / Vacuum Permittivity ( o - Epsilon) : numerical difficulty of generating,ε
maintaining, propagating an electric field in free space OR how much charge is permitted on the surface
of a conductor if that conductor is placed in space

- o = 8.85 x 10-12 C2 / N m2ε

Definite Surface Integral (∮) : integral across an entire surface
- Part of Calculus 3 so won’t actually do the integral
- Used for Gauss’ Law and Gaussian surfaces

Volumetric Charge Density (𝝔 - Rho) : charge per unit of volume [C/m3]
- Occurs within an insulating object as charge is distributed throughout volume, not just surface
- A conducting object (metal) will have charge distributed throughout surface only

Conducting object vs insulating object :
- Conducting means the charge is distributed throughout the surface of the object (metal)
- Insulating means the charge is distributed throughout the volume of the object (wood)
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- Deals with 𝝔 and 𝝔(r) if charge is not uniformly distributed
Electric Flux due to a non-uniform surface

dA = differential area element
E = electric field
∯ = definite surface integral

ΦE = =∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

Gauss’ Law
Electric field flux through a closed surface equals to the magnitude of enclosed charge divided by the
permittivity of free space (vacuum)

- Purpose of Gauss’ Law = easier to find electric fields at certain locations compared to Coulomb’s
Law

- ΦE = =∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

ε
𝑜

When to apply Gauss’ Law:
- When things are symmetric
- When things are infinite

To apply Gauss’ Law:
1. Put a gaussian surface around the charge

a. Sphere, cylinder, rectangular prism (Pill Box)
2. Place the charge or charge distribution in a systematic manner relative to the gaussian surface

a. Pretty much: Place at symmetrical center so E is equal at all points of the surface
3. Apply Gauss’ Law over your chosen gaussian surface

Problem-Solving Steps:
- Right side:

1. Figure out relationship between density (λ/𝜎/𝝔) and qenclosed
a. Ensure the right variables are substituted to match the space of the enclosed

charge (similar to Left Side: Step 6 and examples in case study 6 and 7)
b. When solving for qenc, make sure you substitute A (surface area) or V (volume)

with the right variable (r or R) to match the actual enclosed charge
i. Use r when inside object and R when outside object

c. qenc = 𝜎A (conducting object)
d. qenc = 𝝔V (insulating object)

e. qenc = (insulating object but not uniformly distributed charge)
0

𝑟

∫ 𝝔(𝑟) 𝑆𝐴 𝑑𝑟

2. Substitute for qenclosed to solve right side of Gauss’ Law
- Left side:
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1. Start with Gauss’ Law general equation
2. Split integrals to all sides of the gaussian surface (top/bottom/sides)
3. Cancel out surfaces with no electric flux and explain why (because E ⟂ A)
4. Remove dot product operator and explain why (because E || A)
5. Move E out of integral and explain why (E is constant because of centered charge or

infinite distribution)
6. Substitute for∮dA (surface area for GAUSSIAN SURFACE)
7. Solve for E with algebra

Gaussian Surfaces
- Sphere = 4πr2

- Cylinder body = 2πrL
- Cylinder cap = πr2

- Rectangular Prism (Pill Box) = 6L2

Problem-Solving: List of Gauss’ Law Problems
1. Point charge
2. An infinite line of charge
3. Uniformly distributed non-conducting infinite sheet of charge
4. Infinite sheet of charge conducting
5. Conducting solid sphere (inside and outside)
6. Conducting infinite rod (inside and outside or a hollow rod)
7. Uniformly distributed non-conducting solid sphere (inside and outside)

a. What if it was hollow inside?
8. Uniformly distributed non-conducting infinite solid rod (inside and outside)

a. What if it was hollow inside?
9. Non-conducting, non-uniformly distributed charge on an infinite rod (inside and outside)
10. Non-conducting, non-uniformly distributed charge on a sphere (inside and outside)
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1. Applying Gauss’ Law for a point charge

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of sphere because charge is centered, we can ignore dot
product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- E is constant because charge is centered within the sphere

=𝐸∮ 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

* 4πr2 =𝐸
𝑞

𝑒𝑛𝑐

ε
𝑜

E = ȓ [proves coulomb’s law]
𝐾

𝑒
𝑞

𝑒𝑛𝑐

𝑟2

18



2. Applying Gauss’ Law for an infinite line of charge (thin charged rod)

λ = = λL
𝑞

𝑒𝑛𝑐

𝐿 𝑞
𝑒𝑛𝑐

L = length of cylinder
Remember: 𝐾

𝑒
 =  1

4πε
𝑜

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- 2 integrals to account for 2 cylinder caps and cylinder body

2 (cylinder caps) + (cylinder body) =∮ 𝐸 • 𝑑𝐴 ∮ 𝐸 • 𝑑𝐴 λ𝐿
ε

𝑜

- E is perpendicular to dA of cylinder caps so it cancels (cos90˚ = 0)

(cylinder body) =∮ 𝐸 • 𝑑𝐴 λ𝐿
ε

𝑜

- Since E always parallel to dA at surface of cylinder body because charge is infinitely distributed,
we can ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴 λ𝐿
ε

𝑜

- E is constant because charge is centered within the cylinder

=𝐸∮ 𝑑𝐴 λ𝐿
ε

𝑜

* 2πrL =𝐸 λ𝐿
ε

𝑜

E = ȓ
2𝐾

𝑒
λ

𝑟

19



3. Applying Gauss’ Law for a uniformly distributed infinite charged plane (non-conducting sheet of
charge)

𝜎 = =𝑄
𝐴

𝑑𝑞
𝑑𝐴

= 𝜎dA = 𝜎A𝑞
𝑒𝑛𝑐

dA = cross-section of
gaussian surface

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- 3 integrals to account for top/bottom/sides of pillbox or cylinder

(top) + (bottom) + (side) =∮ 𝐸 • 𝑑𝐴 ∮ 𝐸 • 𝑑𝐴 ∮ 𝐸 • 𝑑𝐴 𝜎𝐴
ε

𝑜

- Side of pillbox/cylinder generate no flux because E is perpendicular to dA

(top) + (bottom) =∮ 𝐸 • 𝑑𝐴 ∮ 𝐸 • 𝑑𝐴 𝜎𝐴
ε

𝑜

- Top and bottom of either gaussian shape will be the same

=2∮ 𝐸 • 𝑑𝐴 𝜎𝐴
ε

𝑜

- Since E always parallel to dA at top/bottom surface of pillbox/cylinder because charge is
infinitely distributed, we can ignore dot product (cos0˚ = 1)

2 =∮ 𝐸𝑑𝐴 𝜎𝐴
ε

𝑜

- E is constant because charge is infinitely distributed

=2𝐸∮ 𝑑𝐴 𝜎𝐴
ε

𝑜

=2𝐸𝐴 𝜎𝐴
ε

𝑜

E = ȓ𝜎
2ε

𝑜
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4. Applying Gauss’ Law for a uniformly distributed infinite charged metal plate
𝜎 = = = 𝜎dA = 𝜎A𝑄

𝐴
𝑑𝑞
𝑑𝐴 𝑞

𝑒𝑛𝑐

dA = cross-section of gaussian surface

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- 2 integrals to account for cap/sides of cylinder, left cap ignored because no charge inside metal

(side) + (cap) =∮ 𝐸 • 𝑑𝐴 ∮ 𝐸 • 𝑑𝐴 𝜎𝐴
ε

𝑜

- Side of pillbox/cylinder generate no flux because E is perpendicular to dA

(cap) =∮ 𝐸 • 𝑑𝐴 𝜎𝐴
ε

𝑜

- Since E always parallel to dA at cap surface of cylinder because charge is infinitely distributed,
we can ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴 𝜎𝐴
ε

𝑜

- E is constant because charge is infinitely distributed

=𝐸∮ 𝑑𝐴 𝜎𝐴
ε

𝑜

=𝐸𝐴 𝜎𝐴
ε

𝑜

E = ȓ𝜎
ε

𝑜
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5. Applying Gauss’ Law for a conducting metal sphere of charge Q (inside and outside)
= 0 when r < R𝑞

𝑒𝑛𝑐

= Q when r > R𝑞
𝑒𝑛𝑐

dA = cross-section of gaussian
surface

Note: Inside of a metal, the static
electric field is 0, this isn’t true if
there’s a current flowing through the
metal as there will be a flowing
electric field, AKA Faraday’s Cage
Phenomenon

r < R (inside metal sphere)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since we are inside of the metal sphere
and all the charge is located on the
surface, there is no qenc or qenc = 0

E(r) = 0 when r < R

r > R (outside metal sphere)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
sphere because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴 𝑄
ε

𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴 𝑄
ε

𝑜

=𝐸 * 4π𝑟2 𝑄
ε

𝑜

E = ȓ when r > R [proves Coulomb’s Law,
𝐾

𝑒
𝑄

𝑟2

makes sense because sphere is essentially a point
charge]
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6. Applying Gauss’ Law for a conducting metal rod of infinite length
𝜎 = = = 𝜎dA = 𝜎A𝑄

𝐴
𝑑𝑞
𝑑𝐴 𝑞

𝑒𝑛𝑐

A = 2πRL
dA = cross-section of gaussian surface

Note: Cylinder caps don’t experience electric flux

r < R (inside metal rod)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since we are inside of the metal rod and
all the charge is located on the surface,
there is no qenc or qenc = 0

E(r) = 0 when r < R

r > R (outside metal rod)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
rod because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴 𝜎𝐴
ε

𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴 𝜎𝐴
ε

𝑜

=𝐸 * 2π𝑟𝐿 𝜎(2π𝑅𝐿)
ε

𝑜

=𝐸 * 𝑟 𝜎𝑅
ε

𝑜

E = ȓ when r > R𝜎𝑅
𝑟ε

𝑜
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7. Applying Gauss’ Law for a uniformly distributed charged non-conducting (insulating) sphere
(inside and outside)

𝝔 = = = 𝝔dV = 𝝔V𝑄
𝑉

𝑑𝑞
𝑑𝑉 𝑞

𝑒𝑛𝑐

V = (r < R / inside)4
3 π𝑟3

V = (r > R / outside)4
3 π𝑅3

𝝔 = volumetric charge density
V = volume of gaussian sphere
Note: Volume is different when inside and outside
because it is volume of the enclosed charge

- when inside sphere, it depends on the radius (r)
- when outside sphere, it maxes out at radius (R)

r < R (inside insulating sphere)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
sphere because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴 𝝔𝑉
ε

𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴 𝝔𝑉
ε

𝑜

=𝐸 * 4π𝑟2 𝝔(4/3 π𝑟3)
ε

𝑜

= ȓ when r < R𝐸 𝝔𝑟
3ε

𝑜

r > R (outside insulating sphere)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
sphere because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴 𝝔𝑉
ε

𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴 𝝔𝑉
ε

𝑜

=𝐸 * 4π𝑟2 𝝔(4/3 π𝑅3)
ε

𝑜

= ȓ when r > R𝐸 𝝔𝑅3

3ε
𝑜
𝑟2
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8. Applying Gauss’ Law for a infinitely long non-conducting (insulating) uniformly distributed
charged rod

𝝔 = = = 𝝔dV = 𝝔V𝑄
𝑉

𝑑𝑞
𝑑𝑉 𝑞

𝑒𝑛𝑐

V = (r < R / inside)π𝑟2𝐿

V = (r > R / outside)π𝑅2𝐿
𝝔 = volumetric charge density
V = volume of gaussian cylinder
Note: Cylinder caps don’t experience
electric flux
Note: Volume is different when inside and
outside because it is volume of the
enclosed charge

- when inside cylinder, it depends
on the radius (r)

- when outside cylinder, it maxes
out at radius (R)

r < R (inside insulating rod)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
rod because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴 𝝔𝑉
ε

𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴 𝝔𝑉
ε

𝑜

=𝐸 * 2π𝑟𝐿 𝝔(π𝑟2𝐿)
ε

𝑜

= ȓ when r < R𝐸 𝝔𝑟
2ε

𝑜

r > R (outside insulating rod)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
rod because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴 𝝔𝑉
ε

𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴 𝝔𝑉
ε

𝑜

=𝐸 * 2π𝑟𝐿 𝝔(π𝑅2𝐿)
ε

𝑜

= ȓ when r > R𝐸 𝝔𝑅2

2ε
𝑜
𝑟
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9. Applying Gauss’ Law for a non-conducting (insulating) non-uniformly distributed charged
sphere

𝝔(r) = br
𝝔(r) = volumetric charge density as a function
of radius (r)
V = volume of gaussian cylinder
Note: since qenc changes with radius due to
variable charge density, qenc can be calculated

with
0

𝑟

∫ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 *  𝑆𝐴 𝑜𝑓 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑢𝑠𝑒 𝑟)

qenc = =
0

𝑟

∫ 𝝔(𝑟) *  4π𝑟2 𝑑𝑟
0

𝑟

∫ 𝑏𝑟 *  4π𝑟2 𝑑𝑟

qenc (r) = πbr4 (inside)
qenc (R) = πbR4 (outside)

r < R (inside insulating sphere)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
rod because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

=𝐸 * 4π𝑟2 π𝑏𝑟4

ε
𝑜

= ȓ when r < R𝐸 𝑏𝑟2

4ε
𝑜

r > R (outside insulating sphere)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
rod because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

=𝐸 * 4π𝑟2 π𝑏𝑅4

ε
𝑜

= ȓ when r > R𝐸 𝑏𝑅4

4ε
𝑜

𝝔(r) E(r) inside varies by

𝝔(r) = C r

𝝔(r) = br r2

𝝔(r) = br2 r3

𝝔(r) = br3 r4
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10. Applying Gauss’ Law for a non-conducting (insulating) non-uniformly distributed charged rod
𝝔(r) = ar + b
𝝔(r) = volumetric charge density as a
function of radius (r)
V = volume of gaussian cylinder
Note: since qenc changes with radius due
to variable charge density, qenc can be
calculated with

0

𝑟

∫ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 *  𝑆𝐴 𝑜𝑓 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑢𝑠𝑒 𝑟)

qenc = dr
0

𝑟

∫ 𝝔(𝑟) *  2π𝑟𝐿

qenc =
0

𝑟

∫(𝑎 + 𝑏𝑟 ) *  2π𝑟𝐿 𝑑𝑟

qenc (r) = (inside)2π𝐿( 𝑎𝑟3

3 + 𝑏𝑟2

2 )

qenc (R) = (outside)2π𝐿( 𝑎𝑅3

3 + 𝑏𝑅2

2 )

r < R (inside insulating sphere)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
rod because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

=𝐸 * 2π𝑟𝐿
2π𝐿( 𝑎𝑟3

3 + 𝑏𝑟2

2 )

ε
𝑜

= ȓ when r < R𝐸 𝑎𝑟2

3ε
𝑜

+ 𝑏𝑟
2ε

𝑜

r > R (outside insulating sphere)

=∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- Since E always parallel to dA at surface of
rod because charge is centered, we can
ignore dot product (cos0˚ = 1)

=∮ 𝐸𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

- E is constant because charge is centered

=𝐸∮ 𝑑𝐴
𝑞

𝑒𝑛𝑐

ε
𝑜

=𝐸 * 2π𝑟𝐿
2π𝐿( 𝑎𝑅3

3 + 𝑏𝑅2

2 )

ε
𝑜

= ȓ when r > R𝐸 𝑎𝑅3

3ε
𝑜
𝑟 + 𝑏𝑅2

2ε
𝑜
𝑟
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TIPS ON HOW TO SOLVE PROBLEMS:
1. IMPORTANT EQUATIONS/CONSTANTS

a. ΦE = E * A = |E||A|cosθ [Electric flux]

b. ΦE = = [Gauss’ Law]∮ 𝐸 • 𝑑𝐴
𝑞

𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

ε
𝑜

c. E =
𝐹

𝑒

𝑞

d. 𝐹
𝑒

= 𝐸𝑞 =  𝑚𝑎

e. a = [For a particle in electric field problems, m = particle mass]𝐸𝑞
𝑚

f. Proton Mass: 1.67 x 10-27 kg
g. Electron Mass: 9.11 x 10-31 kg

2. Treat particles going through an electric field as projectile motion problems (gravity is just
electric force)

a. Find acceleration using F = ma = Eq then use kinematics

3. Use part of Gauss’ Law when solving for E-field∮ 𝐸 • 𝑑𝐴

4. Problem-Solving Steps for Gauss’ Law:
- Right side:

a. Figure out the relationship between density (λ/𝜎/𝝔) and qenclosed
b. Ensure the right variables are substituted to match the space of the enclosed

charge (similar to Left Side: Step 6 and examples in case study 6 and 7)
c. When solving for qenc, make sure you substitute A (surface area) or V (volume)

with the right variable (r or R) to match the actual enclosed charge
i. Use r when inside object and R when outside object

d. Substitute for qenclosed to solve right side of Gauss’ Law
- Left side:

a. Start with Gauss’ Law general equation
b. Split integrals to all sides of the gaussian surface (top/bottom/sides)
e. Cancel out surfaces with no electric flux and explain why (because E ⟂ A)
f. Remove dot product operator and explain why (because E || A)
g. Move E out of integral and explain why (E is constant because of centered charge

or infinite distribution)
h. Substitute for∮dA (surface area for GAUSSIAN SURFACE)
i. Solve for E with algebra

5. Solving qenc tips for Gauss’ Law:
a. If inside metal or conducting object

i. E = 0
b. If object conducting (charge on surface) and charge density constant

i. qenc = 𝜎A
ii. Might have to substitute for 𝜎 (𝜎 = Q/Total Area)

c. If object insulating (charge inside) and charge density constant
i. qenc = 𝝔V
ii. Might have to substitute for 𝝔 (𝝔 = Q/Total Volume)
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d. If object insulating and charge density changing

i. qenc =
0

𝑟

∫ 𝝔(𝑟) 𝑆𝐴 𝑑𝑟

ii. SA will always use small r, not big R
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UNIT 3: Electrostatic Potential
Fundamentals of Unit 3 Physics
Electrostatic Potential (V) [J/C or Volts] : scalar field that is equal to the electrostatic potential energy
per unit of charge relative to some point where it is defined to be zero (usually infinity), similarly to
gravitational field

- (specific point in space or with point charges)𝑉 =
𝑈

𝑒

𝑞
𝑜

=
𝐾

𝑒
𝑞

𝑟

- (if E is a function of distance)∆𝑉 =
∆𝑈

𝑒

𝑞
𝑜

= 𝑊
𝑞

𝑜
=−

𝐴

𝐵

∫ 𝐸 • 𝑑𝑠

- Ue = electrostatic potential energy
- ds = differential steps taken from point A to B
- Moving in direction of E-field will lose electrostatic potential and gain kinetic

- Moving a test charge away from a positive charge
- Moving a test charge towards a negative charge (similar to Earth’s gravity)

- If the charge creating an E-field is positive, then potential should be set to 0 at infinity
- If the charge creating an E-field is negative, then potential should be set to 0 at r=0 (center of the

negative charge creating the E-field), similar to gravitational potential
- E-field varies by 1/r2 while E-potential varies by 1/r

ȓ ● ds = dr : ȓ ● ds is the radial component of ds which is the same as dr. As you move from point A to
point B, how much are you moving radially or along a field line?

- = |r||ds|cosθȓ • 𝑑𝑠
- θ is angle between r and ds

- ȓ • 𝑑𝑠 = 𝑑𝑟
- î • 𝑑𝑠 = 𝑑𝑥
- ĵ • 𝑑𝑠 = 𝑑𝑦
- ǩ • 𝑑𝑠 = 𝑑𝑧

- This concept is mainly used for when E is substituted to integrate in dr domain∆𝑉 =−
𝑟

𝐴

𝑟
𝐵

∫ 𝐸 • 𝑑𝑠
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FTC - Fundamental Theorem of Calculus : the integral of a function’s derivative is the function itself

- (1-D)∆𝑉 =− ∫ 𝐸 • 𝑑𝑥

- (1-D)𝐸 =− 𝑑𝑉
𝑑𝑥

Del Operator (∇) : operator that takes the partial derivative of a multi-dimensional vector, just a symbol
to represent a process or procedure essentially. Partial derivative is taking the derivative and treating other
variables as constants.

- ∇ = î + ĵ + ǩ∂
∂𝑥

∂
∂𝑥

∂
∂𝑥

- 𝐸 =− ∇ · 𝑉 = ∂𝑉
∂𝑥  î +  ∂𝑉

∂𝑥  ĵ + ∂𝑉
∂𝑥  ǩ

- Ex: (Keqx2y4z2) = -Keq(2x)y4z2− ∂
∂𝑥 î î

Equipotential Line/Surface : a plane perpendicular to the E-field at which all points along that plane
have the same electrostatic potential energy, plane isn’t necessarily straight and uniform, it can curve with
the E-field

- Ex: Infinite horizontal equipotential surfaces above an infinite sheet of charge
- Ex: Infinite radial equipotential surfaces around (orbit-like) a point or spherical charge
- Closer equipotential surfaces means a greater potential gradient so E-field is greater because of

the formula: 𝐸 =− 𝑑𝑉
𝑑𝑥

Potential near a point charge

Going from point A to B loses electrostatic potential
energy and gains kinetic energy as itmoves in the same
direction as the E-field

∆𝑉
𝐴→𝐵

= 𝑉
𝐵

− 𝑉
𝐴

=−
𝑟

𝐴

𝑟
𝐵

∫ 𝐸 • 𝑑𝑠

[substitute E for ȓ]∆𝑉
𝐴→𝐵

=−
𝑟

𝐴

𝑟
𝐵

∫ 𝐸 • 𝑑𝑠
𝐾

𝑒
𝑞

𝑟2

[replace with dr]∆𝑉
𝐴→𝐵

=−
𝑟

𝐴

𝑟
𝐵

∫
𝐾

𝑒
𝑞

𝑟2  ȓ • 𝑑𝑠 ȓ • 𝑑𝑠

[integrate]∆𝑉
𝐴→𝐵

=−
𝑟

𝐴

𝑟
𝐵

∫
𝐾

𝑒
𝑞

𝑟2  𝑑𝑟

[apply limits]∆𝑉
𝐴→𝐵

=𝐾
𝑒
𝑞( 1

𝑟
𝐵

− 1
𝑟

𝐴
)
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Absolute potential near a point charge

∆𝑉
𝐴→𝐵

= 𝑉
𝐵

− 𝑉
𝐴

[proven from “Potential near a point charge” section above]𝑉
𝐵

− 𝑉
𝐴

= 𝐾
𝑒
𝑄[ 1

𝑟
𝐵

− 1
𝑟

𝐴
]

- VA = 0 by definition
- = = 0 by math1

𝑟
𝐴

1
∞

= [proving V = ]𝑉
𝐵

= 𝐾
𝑒
𝑄[ 1

𝑟
𝐵

]
𝐾

𝑒
𝑄

𝑟

𝐾
𝑒
𝑄

𝑟

Potential in uniform and varying E-fields

Note: ΔVA→B = 0 as they are on the same equipotential line
Note: This is the long solution showing both ΔVA→B + ΔVB→C

E = 50 N/C î
ΔVA→C = ΔVA→B + ΔVB→C = ΔVB→C

ΔVA→C = [substituting for ΔV]−
𝐴

𝐵

∫ 𝐸 • 𝑑𝑠 −
𝐵

𝐶

∫ 𝐸 • 𝑑𝑠

ΔVA→C = [substituting for E]−
𝐴

𝐵

∫ 50 î • 𝑑𝑠 −
𝐵

𝐶

∫ 50 î • 𝑑𝑠

ΔVA→C = [ ]−
𝐴

𝐵

∫ 50 𝑑𝑥 −
𝐵

𝐶

∫ 50 𝑑𝑥 î • 𝑑𝑠 = 𝑑𝑥

ΔVA→C = [integrate]− 50𝑥|
𝐴
𝐵 − 50𝑥|

𝐵
𝐶

ΔVA→C = [apply limits for xA→B/xB→C]− 50î(0î) − 50î(0. 2î)
ΔVA→C = -10 J/C
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Note: ΔVA→B = 0 as they are on the same equipotential line
Note: This is the short solution showing only ΔVB→C

E = 4x N/C î
ΔVA→C = ΔVA→B + ΔVB→C = ΔVB→C

ΔVA→C = [substituting for ΔV]−
𝐵

𝐶

∫ 𝐸 • 𝑑𝑠

ΔVA→C = [substituting for E]−
0

4

∫ 4𝑥 î • 𝑑𝑠

ΔVA→C = [ ]−
0

4

∫ 4𝑥 𝑑𝑥 î • 𝑑𝑠 = 𝑑𝑥

ΔVA→C = [integrate]− 2𝑥2|
0
4 𝑑𝑥

ΔVA→C = [apply limits]− 2(4)2 − 0 
ΔVA→C = -32 J/C

Applying Conservation of Mechanical Energy to E-field/potential problems

Proton has Vo = 0 at 7V
Remember: 𝑈

𝑒
= 𝑉𝑞

𝑜

ΔEmech = 0
UEo + Ko = UEf + Kf

Voq = Vfq + ½mvf2

vf =
2𝑞(∆𝑣)

𝑚

Note: Electron would move left, opposite of the E-field

Binding energy of an assembly of charges

Remember: V =𝑈
𝑒

= 𝑉𝑞
𝑜

𝐾
𝑒
𝑞

𝑟

Work/Energy required to bring charge from infinity:
ΔU1 = 0

ΔU2 = q2
𝐾

𝑒
𝑞

1

𝑎

ΔU3 = q3+ q3
𝐾

𝑒
𝑞

1

𝑎

𝐾
𝑒
𝑞

2

2𝑎

ΔU4 = q4+ q4 + q4
𝐾

𝑒
𝑞

1

2𝑎

𝐾
𝑒
𝑞

2

𝑎

𝐾
𝑒
𝑞

3

𝑎

q1 = q2 = q3 = q4 = q
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ΔUtotal = Wtotal = +4
𝐾

𝑒
𝑞2

𝑎 2
𝐾

𝑒
𝑞2

2𝑎

Problem-Solving: List of Potential Problems
1. Potential due to discrete (point) charges
2. Potential at the center of charged ring
3. Potential due to uniformly distributed ring of charge, off-center along center axis
4. Potential due to uniformly distributed charged arc
5. Potential due to an electric dipole (axis of a dipole and perpendicular bisector)
6. Potential due to uniformly charged rod (axis of a rod and perpendicular bisector)
7. Potential due to uniformly distributed disk of charge, off-center along center axis
8. Potential at the center of a uniformly distributed charged insulating sphere
9. Potential inside a uniformly distributed charged insulating sphere
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1. Potential due to discrete (point) charges

V1 = V2 = V1 = V2 =
𝐾

𝑒
𝑞

1

𝑟
1

𝐾
𝑒
𝑞

2

𝑟
2

𝐾
𝑒
𝑞

1

𝑟
1

𝐾
𝑒
(−𝑞

2
)

𝑟
2

ΔV = V1 + V2 = + ΔV = V1 + V2 = -
𝐾

𝑒
𝑞

1

𝑟
1

𝐾
𝑒
𝑞

2

𝑟
2

𝐾
𝑒
𝑞

1

𝑟
1

𝐾
𝑒
𝑞

2

𝑟
2

ΔVmax at the center between q1 and q2 ΔVmin at the center between q1 and -q2
Note: Only negative charges will decrease the potential (ΔV), never the distance from a charge

2.Potential due at the center of charged ring

Vc = [general eq.]
𝐾

𝑒
𝑞

𝑟

dVc = [turn into differential and replace r]
𝐾

𝑒
𝑑𝑞

𝑅

Vc = [integrate dq]∫
𝐾

𝑒
𝑑𝑞

𝑅

Vc = [move constants out]
𝐾

𝑒

𝑅 ∫ 𝑑𝑞

Vc =
𝐾

𝑒
𝑄

𝑅

3. Potential due to uniformly distributed ring of charge, off-center along center axis

V = [general eq.]
𝐾

𝑒
𝑞

𝑟

dV = [turn into differential and replace r]
𝐾

𝑒
𝑑𝑞

𝑅2+𝑧2

V = [integrate dq]∫
𝐾

𝑒
𝑑𝑞

𝑅2+𝑧2

Vc = [move constants out]
𝐾

𝑒

𝑅2+𝑧2
∫ 𝑑𝑞

Vc =
𝐾

𝑒
𝑄

𝑅2+𝑧2
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4. Potential due to uniformly distributed charged arc

Vc = [general eq.]
𝐾

𝑒
𝑞

𝑟

dVc = [turn into differential and replace r]
𝐾

𝑒
𝑑𝑞

𝑅

Vc = [integrate dq]∫
𝐾

𝑒
𝑑𝑞

𝑅

Vc = [move constants out]
𝐾

𝑒

𝑅 ∫ 𝑑𝑞

Vc =
𝐾

𝑒
𝑄

𝑅

5. Potential due to an electric dipole (axis of a dipole and perpendicular bisector)

Vp = Vp+ + Vp- [general eq.]

Vp = - [substitute for V]
𝐾

𝑒
𝑞

𝑟

𝐾
𝑒
𝑞

𝑟

Vp = - [substitute for r]
𝐾

𝑒
𝑞

𝑥+𝑎

𝐾
𝑒
𝑞

𝑥−𝑎

Vp = - ) [factor out ]𝐾
𝑒
𝑞( 1

𝑥+𝑎
1

𝑥−𝑎 𝐾
𝑒
𝑞

Vp =
−2𝑎𝐾

𝑒
𝑞

𝑥2−𝑎2

Vp = Vp+ + Vp- [general eq.]

Vp = - [substitute for V]
𝐾

𝑒
𝑞

𝑟

𝐾
𝑒
𝑞

𝑟

Vp = - [substitute for r]
𝐾

𝑒
𝑞

𝑥2+𝑎2

𝐾
𝑒
𝑞

𝑥2+𝑎2

Vp = 0 (potential = 0 at perpendicular bisector of a dipole)
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6. Potential due to uniformly charged rod (axis of a rod and perpendicular bisector)

λ = = dq = λdx𝑄
𝐿

𝑑𝑞
𝑑𝑥

V = [general eq.]
𝐾

𝑒
𝑞

𝑟

dV = [turn into differential and replace r]
𝐾

𝑒
𝑑𝑞

𝑥

V = [integrate dx, apply limits, replace dq]
𝑎

𝑎+𝐿

∫
𝐾

𝑒
λ𝑑𝑥

𝑥

V = [move constants out]𝐾
𝑒
λ

𝑎

𝑎+𝐿

∫ 𝑑𝑥
𝑥

V = [integrate dx and evaluate]𝐾
𝑒
λ𝑙𝑛|𝑥|

𝑎
𝑎+𝐿

V = 𝐾
𝑒
λ𝑙𝑛[ 𝑎+𝐿

𝑎 ]

λ = = dq = λdx𝑄
𝐿

𝑑𝑞
𝑑𝑥

V = [general eq.]
𝐾

𝑒
𝑞

𝑟

dV = [turn into differential and replace r]
𝐾

𝑒
𝑑𝑞

𝑥2+𝑎2

V = [integrate dx, apply limits, replace dq]
−𝐿/2

𝐿/2

∫
𝐾

𝑒
λ𝑑𝑥

𝑥2+𝑎2

V = [move constants out]𝐾
𝑒
λ

−𝐿/2

𝐿/2

∫ 𝑑𝑥

𝑥2+𝑎2

V = [integrate dx and evaluate]𝐾
𝑒
λ𝑙𝑛|𝑥+ 𝑥2 + 𝑎2|

−𝐿/2

𝐿/2

V = [simplify]𝐾
𝑒
λ𝑙𝑛[

𝐿
2 + 𝐿2

4 +𝑎2

𝐿
2 − 𝐿2

4 +𝑎2
]

V = 𝐾
𝑒
λ𝑙𝑛[ 𝐿+ 𝐿2+4𝑎2

−𝐿+ 𝐿2+4𝑎2
]
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7. Potential due to uniformly distributed disk of charge, off-center along center axis

𝜎 = = =𝑄

π𝑅2
𝑑𝑞
𝑑𝐴

𝑑𝑞
𝑟𝑑θ𝑑𝑟

dq = 𝜎rdrdθ

V = [general eq.]
𝐾

𝑒
𝑞

𝑟

dV = [turn into differential and replace r]
𝐾

𝑒
𝑑𝑞

𝑟2+𝑧2

V = = [integrate dr and d , apply limits, replace dq]
0

𝑅

∫
0

2π

∫
𝐾

𝑒
𝜎𝑟𝑑𝑟𝑑θ

𝑟2+𝑧2
0

𝑅

∫
𝐾

𝑒
𝜎𝑟𝑑𝑟

𝑟2+𝑧2
0

2π

∫ 𝑑θ θ

V = [evaluate d ]
0

𝑅

∫
𝐾

𝑒
𝜎𝑟𝑑𝑟

𝑟2+𝑧2
(2π) θ

V = [move out constants]2π𝐾
𝑒
𝜎

0

𝑅

∫ 𝑟𝑑𝑟

𝑟2+𝑧2

V = [integrate dr and evaluate]2π𝐾
𝑒
𝜎( 𝑟2 + 𝑧2)

0
𝑅

V = 2π𝐾
𝑒
𝜎( 𝑅2 + 𝑧2 − 𝑧)

Vc at the center: (z = 0)
Remember: Q = πR2𝜎 𝜎 = 𝑄

π𝑅2

Vc = [general eq.]2π𝐾
𝑒
𝜎( 𝑅2 + 𝑧2 − 𝑧)

Vc = [simplify when z = 0]2π𝐾
𝑒
𝜎𝑅

Vc = [substitute for ]2π𝐾
𝑒
( 𝑄

π𝑅2 )𝑅 𝜎

Vc =
2𝐾

𝑒
𝑄

𝑅

Note the difference when compared to E =
𝐾

𝑒
𝑄

𝑅
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8. Potential at the center of a uniformly distributed charged insulating sphere

Using Gauss’ Law, E(r) can be found inside and outside
the sphere:

Region 1 (inside): E1(r) = r < R
𝐾

𝑒
𝑄𝑟

𝑅3  ȓ

Region 2 (outside): E2(r) = r > R
𝐾

𝑒
𝑄

𝑟2  ȓ

Method to find potential: bringing a test charge from
infinity and placing it at the surface of the sphere then to
the center (this accounts for the different E-fields)

Note: VC = potential at the center where r = 0

ΔV∞→C= VC - V∞ = VC [V∞ = 0 by definition]
ΔV∞→C = ΔV∞→R + ΔVR→C = VR - V∞ + VC - VR = VC [proves ΔV∞→C = ΔV∞→R + ΔVR→C]

ΔV∞→C = [substituting for ΔV∞→R + ΔVR→C]−
∞

𝑅

∫ 𝐸
2

• 𝑑𝑠 −
𝑅

0

∫ 𝐸
1

• 𝑑𝑠

ΔV∞→C = [substituting for E]−
∞

𝑅

∫
𝐾

𝑒
𝑄

𝑟2  ȓ • 𝑑𝑠 −
𝑅

0

∫
𝐾

𝑒
𝑄𝑟

𝑅3  ȓ • 𝑑𝑠

ΔV∞→C = [ ]−
∞

𝑅

∫
𝐾

𝑒
𝑄

𝑟2  𝑑𝑟 −
𝑅

0

∫
𝐾

𝑒
𝑄𝑟

𝑅3  𝑑𝑟 ȓ • 𝑑𝑠 = 𝑑𝑟

ΔV∞→C = [move out constants]− 𝐾
𝑒
𝑄

∞

𝑅

∫ 1

𝑟2  𝑑𝑟 −
𝐾

𝑒
𝑄

𝑅3
𝑅

0

∫ 𝑟 𝑑𝑟

ΔV∞→C = [integrate dr]− 𝐾
𝑒
𝑄( −1

𝑟 )
∞
𝑅  −

𝐾
𝑒
𝑄

𝑅3 ( 𝑟2

2 )
𝑅
0

ΔV∞→C = [evaluate limits]− 𝐾
𝑒
𝑄( −1

𝑅 + 1
∞ ) −

𝐾
𝑒
𝑄

𝑅3 (0 − 𝑅2

2 )

ΔV∞→C = [simplify]
𝐾

𝑒
𝑄

𝑅  +
𝐾

𝑒
𝑄

2𝑅

ΔV∞→C =
3𝐾

𝑒
𝑄

2𝑅

Graphing E-field and Potential for:
Insulating Sphere (corresponds with above) Conducting Sphere
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9. Potential inside a uniformly distributed charged insulating sphere

Using Gauss’ Law, E(r) can be found inside and outside the
sphere:

Region 1 (inside): E1(r) = r < R
𝐾

𝑒
𝑄𝑟

𝑅3  ȓ

Region 2 (outside): E2(r) = r > R
𝐾

𝑒
𝑄

𝑟2  ȓ

Method to find potential: bringing a test charge from
infinity and placing it at the surface of the sphere then to a
point “a” distance away from the center (this accounts for
the different E-fields)

ΔV∞→a= Va - V∞ = Va [V∞ = 0 by definition]
ΔV∞→a = ΔV∞→R + ΔVR→a = VR - V∞ + Va - VR = Va [proves ΔV∞→a = ΔV∞→R + ΔVR→a]

ΔV∞→a = [substituting for ΔV∞→R + ΔVR→C]−
∞

𝑅

∫ 𝐸
2

• 𝑑𝑠 −
𝑅

𝑎

∫ 𝐸
1

• 𝑑𝑠

ΔV∞→a = [substituting for E]−
∞

𝑅

∫
𝐾

𝑒
𝑄

𝑟2  ȓ • 𝑑𝑠 −
𝑅

𝑎

∫
𝐾

𝑒
𝑄𝑟

𝑅3  ȓ • 𝑑𝑠

ΔV∞→a = [ ]−
∞

𝑅

∫
𝐾

𝑒
𝑄

𝑟2  𝑑𝑟 −
𝑅

𝑎

∫
𝐾

𝑒
𝑄𝑟

𝑅3  𝑑𝑟 ȓ • 𝑑𝑠 = 𝑑𝑟

ΔV∞→a = [move out constants]− 𝐾
𝑒
𝑄

∞

𝑅

∫ 1

𝑟2  𝑑𝑟 −
𝐾

𝑒
𝑄

𝑅3
𝑅

𝑎

∫ 𝑟 𝑑𝑟

ΔV∞→a = [integrate dr]− 𝐾
𝑒
𝑄( −1

𝑟 )
∞
𝑅  −

𝐾
𝑒
𝑄

𝑅3 ( 𝑟2

2 )
𝑅
𝑎

ΔV∞→a = [evaluate limits]− 𝐾
𝑒
𝑄( −1

𝑅 + 1
∞ ) −

𝐾
𝑒
𝑄

𝑅3 ( 𝑎2

2 − 𝑅2

2 )

ΔV∞→a = [simplify]
𝐾

𝑒
𝑄

𝑅 −
𝐾

𝑒
𝑄𝑎2

2𝑅3 +
𝐾

𝑒
𝑄𝑅2

2𝑅3

ΔV∞→a = [simplify]
𝐾

𝑒
𝑄

𝑅 −
𝐾

𝑒
𝑄𝑎2

2𝑅3 +
𝐾

𝑒
𝑄

2𝑅

ΔV∞→a = [simplify]
3𝐾

𝑒
𝑄

2𝑅 −
𝐾

𝑒
𝑄𝑎2

2𝑅3

ΔV∞→a =
𝐾

𝑒
𝑄

𝑅 [ 3
2 − 𝑎2

2𝑅2 ]
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TIPS ON HOW TO SOLVE PROBLEMS:
1. IMPORTANT EQUATIONS/CONSTANTS

a. 𝑉 =
𝑈

𝑒

𝑞
𝑜

=
𝐾

𝑒
𝑞

𝑟

b. ∆𝑉 =
∆𝑈

𝑒

𝑞
𝑜

= 𝑊
𝑞

𝑜
=−

𝐴

𝐵

∫ 𝐸 • 𝑑𝑠

c. 𝐸 =− ∇ · 𝑉 = ∂𝑉
∂𝑥  î +  ∂𝑉

∂𝑥  ĵ + ∂𝑉
∂𝑥  ǩ

2. List of useful integrals: (a = constant)

a. = (used in bisector axis of charged rod)∫ 𝑑𝑥

(𝑥2+𝑎2)1/2 𝑙𝑛(𝑥 + 𝑥2 + 𝑎2)

3. Problem-solving steps for potential problems (point charge / 2D objects):
a. Establish relationships with densities (𝜎/λ) and/or find out what dq equals

b. Start with general equation 𝑉 =
𝐾

𝑒
𝑞

𝑟
c. Turn general equation into differential and replace r
d. Substitute for dq from step “a”
e. Integrate over necessary domains (dr and/or d ) and move out constantsθ
f. Apply limits to appropriate domain
g. Integrate and evaluate the integral
h. Simplify

4. Problem-solving steps for potential problems (3D objects):
a. Find out E-fields of each region using Gauss’ Law (see unit 2)

b. Start with general equation ∆𝑉 =−
𝐴

𝐵

∫ 𝐸 • 𝑑𝑠

c. Split the path from infinity to the desired point and give the general equation to each
separated path
i. Infinity to surface, surface to point

d. Apply limits to respective separated paths
i. Infinity to surface: ∞→R, surface to point: R→?

e. Substitute for E-field found in step “a” for each respective region of the separated paths
i. Infinity to surface: sub E-field outside, surface to point: sub E-field inside
ii. Don’t forget the that comes with E-fieldȓ

f. Replace to drȓ • 𝑑𝑠
g. Move out constants
h. Integrate over domain of dr
i. Simplify

5. The magnitude of potential is MAX at the center between 2 charges of the same polarity (both
positive/negative)

6. The magnitude of potential is MINIMUM or 0 between 2 charges of opposite polarity (one
positive one negative and vice versa)

7. Moving in the same direction as E-field will lose potential energy
8. When using conservation of mechanical energy in solving potential problems and the initial point

is very far away from the final point, the initial point will have 0 potential energy
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UNIT 4: Capacitors, Dielectrics, and Conductors
Fundamentals of Unit 4 Physics
Capacitance (F) [C/V or Farads] : amount of charge stored in a capacitor per unit of potential difference

- 𝐶 = 𝑄
∆𝑉

- Applying a potential difference will allow the capacitor to hold a charge
- Capacitor is independent of the amount of charge or potential difference, ONLY the geometry and

the dielectric material
- Can’t be negative
- Problem solving steps:

- Find Egap with Gauss’ Law
- Find ΔV using Egap and integrate from low to high potential

- Change Egap into domain of dr if necessary
- Find C with Q and ΔV

Energy of a Capacitor (J) [Joules] : amount of energy in a capacitor

- 𝑊 = 1
2

𝑄2

𝐶

- 𝑊 = 1
2 𝑄∆𝑉

- 𝑊 = 1
2 𝐶∆𝑉2

Energy Density (u) [J/V or Joules/Volume] : energy stored in a capacitor per unit of gap volume

Symbols in Circuit Diagrams :
Wire Battery

Lamp Resistance Device

(variable)
Capacitors

(variable)
Voltmeter Ammeter
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Ohmmeter Multimeter

Inductor Switch

Series Connections : capacitors are connected in a series or one after another
- Charges on all capacitors are the same

- Qtotal = Q1 = Q2 = Q3

- Potential differences / Voltages are different (distributed throughout capacitors)
- ΔVtotal = ΔV1 + ΔV2 + ΔV3

- Equivalent Capacitance formula:
- Ceq =

1
1
𝐶

1
 + 1

𝐶
2

 + 1
𝐶

3

Parallel Connections : capacitors are connected in parallel or side by side one another
- Charges on all capacitors are different (distributed throughout capacitors)

- Qtotal = Q1 + Q2 + Q3

- Potential differences / Voltages are the same
- ΔVtotal = ΔV1 = ΔV2 = ΔV3

- Equivalent Capacitance formula:
- Ceq = C1 + C2 + C3

Dielectric : an insulator that is placed between a capacitor to reduce the potential difference at which the
charges are held, increasing the capacitance

- Achieved by polarization of insulator’s atoms which creates an E-field in the opposite direction,
lowering potential difference

Dielectric Constant (k) : a constant to quantitatively measure the dielectric ability to a material
- Can’t be negative and lowest is 1
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- Dielectric constants of some materials:
- Vacuum = 1 (base) Teflon = 2.5
- Air >= 1 Rubber = 7
- Plastic = 3 Water = 80 (already polarized)
- Paper = 3.5 Strontium Titanate = 233

- Permittivity of dielectric
- 𝝐k = 𝝐ok
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Problem-Solving: List of Capacitance Problems
1. Capacitance of a parallel plate capacitor
2. Capacitance of a spherical capacitor
3. Capacitance of a cylindrical capacitor

1. Capacitance of a parallel plate capacitor

Egap = E+ + E- = + = = [getting Egap]
σ

+

2ϵ
𝑜

σ
−

2ϵ
𝑜

σ
ϵ

𝑜

𝑄
𝐴ϵ

𝑜

(integrate from low to high potential) [general eq.]∆𝑉 =−
𝑑

0

∫ 𝐸
𝑔𝑎𝑝

· 𝑑𝑠

[E constant, take out]∆𝑉 =− 𝐸
𝑑

0

∫ 𝑑𝑠

[integrate]∆𝑉 =− 𝐸(− 𝑑) = 𝐸𝑑
[sub for Egap]∆𝑉 = 𝑄𝑑

𝐴ϵ
𝑜

C|| = [general eq.]𝑄
∆𝑉

C|| = [sub for ΔV]
𝑄𝐴ϵ

𝑜

𝑄𝑑

C|| = [simplify]
𝐴ϵ

𝑜

𝑑
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2. Capacitance of a spherical capacitor

[getting Egap]∮ 𝐸
𝑔𝑎𝑝

· 𝑑𝐴 =
𝑞

𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

ϵ
𝑜

[getting Egap]𝐸
𝑔𝑎𝑝

(4π𝑟2) = 𝑄
ϵ

𝑜

[getting Egap]𝐸
𝑔𝑎𝑝

= 𝑄

4π𝑟2ϵ
𝑜

[general eq.]∆𝑉 =−
𝑏

𝑎

∫ 𝐸
𝑔𝑎𝑝

· 𝑑𝑠

[get E in domain of dr]𝐸
𝑔𝑎𝑝

· 𝑑𝑠 = − 𝐸
𝑔𝑎𝑝

𝑑𝑠 = 𝐸
𝑔𝑎𝑝

𝑑𝑟

[substitute Egap ds]∆𝑉 =−
𝑏

𝑎

∫ 𝐸
𝑔𝑎𝑝

𝑑𝑟 ·

[integrate]∆𝑉 =− 𝑄
4πϵ

𝑜 𝑏

𝑎

∫ 1

𝑟2 𝑑𝑟

[evaluate limits]∆𝑉 =− 𝑄
4πϵ

𝑜

−1
𝑟 |

𝑏
𝑎

[simplify]∆𝑉 =− 𝑄
4πϵ

𝑜
( −1

𝑎 + 1
𝑏 )

[simplify]∆𝑉 = 𝑄
4πϵ

𝑜
( 𝑏−𝑎

𝑎𝑏 )

C|| = [general eq.]𝑄
∆𝑉

C|| = [sub for ΔV]𝑄
𝑄

4πϵ
𝑜

( 𝑏−𝑎
𝑎𝑏 )

C|| = 4πϵ
𝑜
( 𝑎𝑏

𝑏−𝑎 )
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3. Capacitance of a cylindrical capacitor

[getting Egap]∮ 𝐸
𝑔𝑎𝑝

· 𝑑𝐴 =
𝑞

𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

ϵ
𝑜

[getting Egap]𝐸
𝑔𝑎𝑝

(2π𝑟𝐿) = 𝑄
ϵ

𝑜

[getting Egap]𝐸
𝑔𝑎𝑝

= 𝑄
2π𝑟𝐿ϵ

𝑜

[general eq.]∆𝑉 =−
𝑏

𝑎

∫ 𝐸
𝑔𝑎𝑝

· 𝑑𝑠

[get E in domain of dr]𝐸
𝑔𝑎𝑝

· 𝑑𝑠 = − 𝐸
𝑔𝑎𝑝

𝑑𝑠 = 𝐸
𝑔𝑎𝑝

𝑑𝑟

[substitute Egap ds]∆𝑉 =−
𝑏

𝑎

∫ 𝐸
𝑔𝑎𝑝

𝑑𝑟 ·

[integrate]∆𝑉 =− 𝑄
2π𝐿ϵ

𝑜 𝑏

𝑎

∫ 1
𝑟 𝑑𝑟

[evaluate limits]∆𝑉 =− 𝑄
2π𝐿ϵ

𝑜
𝑙𝑛|𝑟||

𝑏
𝑎

[simplify]∆𝑉 =− 𝑄
2π𝐿ϵ

𝑜
𝑙𝑛| 𝑎

𝑏 |

C|| = [general eq.]𝑄
∆𝑉

C|| = [sub for ΔV]𝑄
− 𝑄

2π𝐿ϵ
𝑜

𝑙𝑛| 𝑎
𝑏 |

C|| =
2π𝐿ϵ

𝑜

𝑙𝑛| 𝑏
𝑎 |
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Reconnecting Capacitors (Series →
Parallel)

Reconnecting Capacitors (Parallel →
Series)

Steps in reconnecting capacitors from series to
parallel:

1. Find Ceq (series)
2. Find Qtotal and Q on each capacitor
3. Reconnect capacitors in parallel
4. Find ΔV across each capacitor
5. Find charge on each capacitor

Ex:

1. 𝐶
𝑒𝑞

= 1
1
𝐶

1
+ 1

𝐶
2

= 1. 33µ𝐹

2. 𝑄 = 𝐶
𝑒𝑞

∆𝑉 = 1. 33 * 9 = 12µ𝐶

𝑄
𝑡𝑜𝑡𝑎𝑙

= 𝑛𝑄 = 2 * 12 = 24µ𝐶

3.

4. ∆𝑉 =
𝑄

𝑡𝑜𝑡𝑎𝑙

𝐶
𝑒𝑞

 (𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙) = 24
6 = 4𝑉

5. 𝑄
1

= 𝐶
1
∆𝑉 = 2 * 4 = 8µ𝐶

𝑄
2

= 𝐶
2
∆𝑉 = 4 * 4 = 16µ𝐶

𝑄
𝑡𝑜𝑡𝑎𝑙

= 8 + 16 = 24µ𝐶

Steps in reconnecting capacitors from parallel to
series:

1. Find Ceq (parallel)
2. Find Q1 and Q2 to find Qtotal

3. Reconnect capacitors in series
4. Find charge on each capacitor
5. Find ΔV across each capacitor

Ex:

1. 𝐶
𝑒𝑞

= 𝐶
1

+ 𝐶
2

= 9µ𝐹

2. 𝑄
1

= 𝐶
1
∆𝑉 = 3 * 9 = 27µ𝐶

𝑄
2

= 𝐶
2
∆𝑉 = 6 * 9 = 54µ𝐶

𝑄
𝑡𝑜𝑡𝑎𝑙

= 27 + 54 = 81µ𝐶

3.

4. 𝑄 =
𝑄

𝑡𝑜𝑡𝑎𝑙

𝑛 = 81
2 = 40. 5µ𝐶

5. ∆𝑉
1

= 𝑄
𝐶

𝑡
= 40.5

3 = 13. 5𝑉

∆𝑉
2

= 𝑄
𝐶

2
= 40.5

6 = 6. 75𝑉

∆𝑉
𝑡𝑜𝑡𝑎𝑙

= 13. 5 + 6. 75 = 20. 25𝑉
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Electric Dipole in an E-field

Experiencing Torque Unstable Equilibrium Stable Equilibrium
r = moment arm When r || E, there is no torque
p = electric dipole moment When r ⟂ E, there is max torque
p = qr

τ = p x E = pEsinθ (cross) W = τθ
τ = qr x E = qrEsinθ dW = τdθ

W = =
θ

𝑜

θ
𝑓

∫ τ𝑑θ
θ

𝑜

θ
𝑓

∫ 𝑝𝐸𝑠𝑖𝑛θ𝑑θ

W = -pEcosθf + pEcosθo
If θo = 90˚, then
W = -pEcosθf = -pEcosθ
W = -p E (dot)•
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Capacitors & Dielectric

- Charged places create an E-field (Eo)
- Atoms on the insulator experience the E-field (Eo) and since the electrons aren’t free to move

(insulator), the electron cloud deforms and the atom is polarized
- Polarization creates an E-field (Eind or Einduced) that counters Eo

- Total E-field in the gap is reduced: Egap = Eo - Eind

- Since ΔV = Egapd, a smaller Egap means a smaller ΔV (potential difference)
- Since C = , a smaller ΔV means greater C (capacitance)𝑄

Δ𝑉

- Charge remains constant

Egap reduces by factor of 1/k
ΔV reduces by factor of 1/k
C increases by k

Conducting Dielectric within a Capacitor

→

- Electrons are able to flow freely
- Dielectric polarizes creating two individual capacitors connected in series
- Capacitance decreases per capacitor (defeats the purpose of a dielectric)
- C’ = 𝐶

2
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Partially Filled Capacitor

→

- We’re able to cut capacitor in half
- This creates two individual capacitors connected in parallel
- C’ = 𝐶

2 (1 + 𝑘)

TIPS ON HOW TO SOLVE PROBLEMS:
1. IMPORTANT EQUATIONS/CONSTANTS

a. 𝐶 = 𝑄
∆𝑉

b. 𝑊 = 1
2

𝑄2

𝐶

c. 𝑊 = 1
2 𝑄∆𝑉

d. 𝑊 = 1
2 𝐶∆𝑉2

e. τ = p x E = pEsinθ (for electric dipole)
f. W = -p E (for electric dipole)•
g. 𝝐k = 𝝐ok

2. Series Connections
a. Qtotal = Q1 = Q2 = Q3

b. ΔVtotal = ΔV1 + ΔV2 + ΔV3

c. Ceq =
1

1
𝐶

1
 + 1

𝐶
2

 + 1
𝐶

3

3. Parallel Connections
a. Qtotal = Q1 + Q2 + Q3

b. ΔVtotal = ΔV1 = ΔV2 = ΔV3

c. Ceq = C1 + C2 + C3

4. Steps to solve Capacitance problems
a. Find Egap using Gauss’ Law

b. Find ΔV using and change Egap domain if necessary∆𝑉 =−
𝑏

𝑎

∫ 𝐸
𝑔𝑎𝑝

· 𝑑𝑠

c. Find Capacitance using 𝐶
∆𝑉
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5. Steps in reconnecting capacitors from series to parallel:
a. Find Ceq (series)
b. Find Qtotal and Q on each capacitor
c. Reconnect capacitors in parallel
d. Find ΔV across each capacitor
e. Find charge on each capacitor

6. Steps in reconnecting capacitors from parallel to series:
a. Find Ceq (parallel)
b. Find Q1 and Q2 to find Qtotal

c. Reconnect capacitors in series
d. Find charge on each capacitor
e. Find ΔV across each capacitor
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UNIT 5: Current, Resistance, and Power
Fundamentals of Unit 5 Physics
Battery : device that holds two conducting terminals at a constant potential difference through chemical
reaction

Current (I) [A or Amperes // C/S or Coulombs/Second] : flow of positive charge in a conductor
- 𝐼 = 𝑞

∆𝑡 = 𝑑𝑞
𝑑𝑡

- 𝐼 = 𝑛𝑞𝐴Δ𝑥
𝑡  =  𝑛𝑞𝐴𝑉

𝑑

- 𝐼 = ∫ 𝐽 · 𝑑𝐴

Resistance (R) [Ω or Ohms] : the restriction of current through a device
- R = V/I

Drift Velocity of Charge Carriers (Vd) [m/s] : the average velocity of a free charge carrier (electrons)
within a lattice structure under the Drude model of simulating charge carriers within a wire

- Assumption: Drift velocity is constant and the charge carriers are electrons
- Problem: There’s an E-field in the wire causing the electrons to accelerate, why would velocity be

constant?
- In reality: The electrons hit the atoms of the wire’s lattice structure which we assume to cause the

electron to lose all speed (violates conservation of momentum but this is only a model), then the
electron speeds up again until it hits another atom

- Solution: The drift velocity is the average velocity of the electrons

Carrier Charge Density (n) [Charge Carriers/Volume] : density of charge carriers, usually electrons,
within a given volume, usually a section of a wire of length L or Δx

- V = AΔx
- V = volume
- A = cross-sectional area
- Δx = length

Total charge in a conducting wire (Q) [Coulombs] : charge within a certain volume or section of a wire
- 𝑄 = 𝑛𝑞𝐴Δ𝑥
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Current Density (J) [Current/Area] : vector measurement of current per unit of area
- 𝐽 = 𝐼

𝐴 = 𝑛𝑞𝑉
𝑑

Conductivity of a Conductor (𝝈) [1 / Ohm Meter] : an intrinsic property that measure of a conductor’s
ability to conduct electricity

- Conductance is an extrinsic property measured in mhos

Resistivity of a Conductor (1/𝝈 or 𝟈) [Ohm Meter] : an intrinsic property that measure of a conductor’s
ability to resist electricity

- Resistance is an extrinsic property measured in ohms

Power (W) [Watts or J/C or Joules/Second] : rate of energy per second going through a conductor

- P = IΔV = I2R = Δ𝑉2

𝑅

Circuit characteristics :
- Charges don’t build up within a conductor
- No opposing E-field is created
- An E-field is created inside the conductor that causes the charge to flow (current)

Ohm’s Law
1. In conductors: “current density and an electric field is established in a conductor when a potential

difference is maintained across that conductor”
a. J = 𝝈E

2. In circuits: “Current in a circuit is directly proportional to the potential difference and inversely
proportional to the resistance”

a. V = IR

TIPS ON HOW TO SOLVE PROBLEMS:
1. IMPORTANT EQUATIONS/CONSTANTS

a. 𝐼 = 𝑞
∆𝑡 = 𝐽𝐴 = ∫ 𝐽 · 𝑑𝐴

b. Ohm’s Law: J = 𝝈E and V = IR
c. ∆𝑉 = 𝐸𝐿 𝑜𝑟 𝐸𝑑 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
d. (resistance in a wire/conductor)𝑅 = 𝐿

𝝈𝐴

e. P = IΔV = I2R = Δ𝑉2

𝑅

f. E = Pt = IΔVt = I2Rt = tΔ𝑉2

𝑅
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UNIT 6: Direct Connect (DC) Circuits and
Resistor-Capacitor (RC) Circuits

Fundamentals of Unit 6 Physics
Circuit characteristics :

- Current is the positive flow of charge
- When we follow current through a resistor, we lose potential
- When we move from negative to positive terminals of a battery, we gain potential
- In ideal DC circuits, wires have no resistance
- Moving with current:

- Through a resistor/capacitor, potential is lost
- Moving against current:

- Through a resistor/capacitor, potential is gained
- When moving through a battery, potential is gain or lost based on the “longer line” or the final

polarity because it is calculated using final - initial
- (+) - (-) = +ΔV / (-) - (+) = -ΔV

Electromotive Force (EMF) : electrostatic potential created due to chemical reaction in a battery or due
to mechanical actions in a generator that explains the movement of electrons in a wire

- Not actually a force, but rather the potential difference that causes electrons to move
- Ideal Batteries: emf = ΔVbattery

- Real Batteries: emf = ΔVbattery + Ir
- r = internal resistance of the battery
- Ir = potential loss due to internal resistance of battery

- This is what causes devices to heat up after a while

Time Constant (τ) [seconds or ΩF] : the length of time for a capacitor to fill with charge
- Small τ means the capacitor charges very quickly (defibrillator)
- Big τ means the capacitor charges very slowly
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Series DC Circuits
Remember:

- Resistance is sum of all resistors
- Voltage is different
- Current is same

Req = R1 + R2

Itot = ΔV/Req

ΔV1 = ItotR1

ΔV2 = ItotR2

ΔVbat = ΔV1+ ΔV2

Req = 6Ω
Itot = 1.5A
ΔV1 = 3V
ΔV2 = 6V
ΔVbat = 9V (KVL checks out)

Parallel DC Circuits
Remember:

- Resistance is 1/(1/R1 + 1/R2)
- Voltage is same
- Current is different

Req =
1

1
𝑅

1
+ 1

𝑅
2

+ 1
𝑅

3

ΔVbat = ΔV1 = ΔV2 = ΔV3

I1 = ΔVbat/R1

I2 = ΔVbat/R2

I3 = ΔVbat/R3

Itot = I1+ I2 + I3 = Vbat/Req

Req = 1.091Ω
I1 = 4.5A
I2 = 2.25A
I3 = 1.5A
Itot = 8.25A
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Combinational DC Circuits

→ →

→

Steps:
1. Simplify the circuit by combining resistors in series then resistors in parallel then repeat until

there’s only one resistor and calculate Req

2. Work backwards from simple to complex circuit and find the voltage drop (ΔV) through each
resistor

3. Find the current through each branch (not the same for all resistors as some are in parallel and
some are in series)
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Kirchhoff's Rules
1. Junction Rule / Kirchhoff’s Current Law: current flowing into a junction is the same current

flowing out of a junction
a. Based on Conservation of Charge

2. Loop Rule / Kirchhoff’s Voltage Law: when we move in a loop in a circuit, there is no change in
potential difference (ΔV = 0)

a. Based on Conservation of Energy
JR: I1 = I2 + I3

LR1: -ΔVR1 - ΔVR5 - ΔVR2 + 12 = 0
LR1: -I1R1 - I2R5 - I1R2 + 12 = 0
LR1: -10I1 -5I2 -10I1 + 12 = 0
LR1: -20I1 - 5I2 + 12 = 0

LR2: -ΔVR3 - 6 - ΔVR4 + ΔVR5 = 0
LR2: -I3R3 - 6 - I3R4 + I2R5 = 0
LR2: -20I3 - 6 - 20I3 + 5I2 = 0
LR2: -40I3 +5I2 - 6 = 0

I1 = 0.52A
I2 = 0.33A
I3 = 0.19A

Exponential Growth and Decay of Charge/Current/Voltage in RC Circuits
Growth:

- Capacitor is initially uncharged, but when the switch is connected, current begins flowing through
the resistor and the capacitor begins charging

- Initially, the current doesn’t account for the presence of the capacitor because it’s uncharged so it
acts as a highly conductive wire with no potential drop across it

- Essentially, capacitor part of the circuit becomes a straight wire
- When the capacitor is fully charged, no current flows through the capacitor so after a long period,

the capacitor acts as an open switch with maximum/E voltage across it
- Essentially, capacitor part of the circuit is completely removed

Qmax = EC, = RCτ

(increasing exponentially)𝑄(𝑡) = 𝐸𝐶(1 − 𝑒−𝑡/𝑅𝐶)

(increasing exponentially)𝑄(𝑡) = 𝑄
𝑚𝑎𝑥

(1 − 𝑒−𝑡/𝑅𝐶)

𝑄(τ) = 𝑄
𝑚𝑎𝑥

(1 − 𝑒−τ/𝑅𝐶) = 0. 63𝑄
𝑚𝑎𝑥

- is the amount of time it takes for charge to build up to 63.2% of total charge on the capacitorτ

Imax = E/R

58



(decreasing exponentially)𝐼(𝑡) = 𝐸
𝑅  𝑒−𝑡/𝑅𝐶

(decreasing exponentially)𝐼(𝑡) = 𝐼
𝑚𝑎𝑥

 𝑒−𝑡/𝑅𝐶

𝐼(τ) = 𝐼
𝑚𝑎𝑥

(𝑒−τ/𝑅𝐶) = 0. 368𝐼
𝑚𝑎𝑥

- is the amount of time it takes for current to decay down to 36.8% of total current on theτ
capacitor

Voltage on Resistor: (decreasing exponentially)∆𝑉
𝑅

= 𝐼(𝑡)𝑅 = 𝐸 𝑒−𝑡/𝑅𝐶

Voltage on Capacitor: (increasing exponentially)∆𝑉
𝐶

= 𝑄(𝑡)
𝐶 = 𝐸(1 −  𝑒−𝑡/𝑅𝐶)

Decay:
- When a fully charged capacitor is connected to a resistor, the charges will move from positive to

negative plate until capacitor is fully discharged
- Initially, switch is closed and current is maximum but decays exponentially when capacitor is

discharged

(decreasing exponentially)𝑄(𝑡) = 𝑄
𝑚𝑎𝑥

 𝑒−𝑡/𝑅𝐶

(decreasing exponentially)𝐼(𝑡) =
−𝑄

𝑚𝑎𝑥

𝑅𝐶  𝑒−𝑡/𝑅𝐶 = 𝐼
𝑚𝑎𝑥

 𝑒−𝑡/𝑅𝐶

Resistor Capacitor

ΔVR = I(t)R

ΔVR =
𝑄

𝑚𝑎𝑥

𝐶 𝑒−𝑡/𝑅𝐶

ΔVmax =
𝑄

𝑚𝑎𝑥

𝐶

ΔVR(t) = (decreasing exponentially)Δ𝑉
𝑚𝑎𝑥

𝑒−𝑡/𝑅𝐶

ΔVC =
𝑄(𝑡)

𝐶

ΔVC =
𝑄

𝑚𝑎𝑥

𝐶 𝑒−𝑡/𝑅𝐶

ΔVmax =
𝑄

𝑚𝑎𝑥

𝐶

ΔVC(t) = (decreasing exponentially)Δ𝑉
𝑚𝑎𝑥

𝑒−𝑡/𝑅𝐶

Notice how ΔVR= ΔVC when circuit is disconnected from a battery and decaying

Energy stored in capacitors in RC Circuits
𝐸𝐼 − 𝐼2𝑅 + 𝑄

𝐶 𝐼 = 0

I = 𝑑𝑄
𝑑𝑡

𝐸𝐼 − 𝐼2𝑅 + 𝑄
𝐶

𝑑𝑄
𝑑𝑡 = 0

EI = rate of energy supplied by the battery
I2R = rate of energy dissipated at the resistor

= rate of energy stored in the capacitor𝑄
𝐶

𝑑𝑄
𝑑𝑡
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u = energy stored in capacitor = =𝑄2

2𝐶

ϵ
𝑜
𝐸2

2 𝑉

- v = volume where E-field is present

Energy per unit of volume =
ϵ

𝑜
𝐸2

2

TIPS ON HOW TO SOLVE PROBLEMS:
1. IMPORTANT EQUATIONS/CONSTANTS

a. GROWTH
i. Qmax = EC, = RCτ

ii. (increasing exponentially)𝑄(𝑡) = 𝐸𝐶(1 − 𝑒−𝑡/𝑅𝐶)

iii. (increasing exponentially)𝑄(𝑡) = 𝑄
𝑚𝑎𝑥

(1 − 𝑒−𝑡/𝑅𝐶)

iv. Imax = E/R

v. (decreasing exponentially)𝐼(𝑡) = 𝐸
𝑅  𝑒−𝑡/𝑅𝐶

vi. (decreasing exponentially)𝐼(𝑡) = 𝐼
𝑚𝑎𝑥

 𝑒−𝑡/𝑅𝐶

vii. (decreasing exponentially)∆𝑉
𝑅

= 𝐼(𝑡)𝑅 = 𝐸 𝑒−𝑡/𝑅𝐶

viii. (increasing exponentially)∆𝑉
𝐶

= 𝑄(𝑡)
𝐶 = 𝐸(1 −  𝑒−𝑡/𝑅𝐶)

b. DECAY

i. (decreasing exponentially)𝑄(𝑡) = 𝑄
𝑚𝑎𝑥

 𝑒−𝑡/𝑅𝐶

ii. (decreasing exponentially)𝐼(𝑡) =
−𝑄

𝑚𝑎𝑥

𝑅𝐶  𝑒−𝑡/𝑅𝐶 = 𝐼
𝑚𝑎𝑥

 𝑒−𝑡/𝑅𝐶

c. u = energy stored in capacitor = =𝑄2

2𝐶

ϵ
𝑜
𝐸2

2 𝑉

2. Moving with current:
a. Through a resistor/capacitor, potential is lost

3. Moving against current:
a. Through a resistor/capacitor, potential is gained

4. When moving through a battery, potential is gain or lost based on the “longer line” or the final
polarity because it is calculated using final - initial

a. (+) - (-) = +ΔV / (-) - (+) = -ΔV
5. Capacitor is a wire when switch is closed, then becomes completely gone after a long time as it’s

full of charge with no current through it
6. Series Circuits:

a. Resistance is sum of all resistors
b. Voltage is different
c. Current is same

7. Parallel Circuits:
a. Resistance is 1/(1/R1 + 1/R2)
b. Voltage is same
c. Current is different
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UNIT 7: Magnetic Fields
Fundamentals of Unit 7 Physics
Magnetic Field (B-Field) [T or Tesla]: a field that is created by the movement of charges relative to each
other

- A magnetic field is generated when there’s a movement of charge (current)
- Direction of B-field is how the fingers curl when performing RHR and thumb is in

direction of current
- 1 Tesla = 10,000 Gauss
- Always flows from North to South pole
- There is NO work done by a STATIC B-field on a FREE moving charge

- A B-field just causes the charge to move in a circle at constant velocity

Magnetic Force (FB) [N] : force on a charged particle due to a magnetic field
- FB = q(v x B) (formula used for free moving charges in a uniform magnetic field)

- q = amount of charge on the particle
- v = velocity of the charge
- B = magnetic field

- FB = I(L x B) (formula used for current carrying wires in a uniform magnetic field)
- I = current
- L = length vector (magnitude is the wire length and direction is the same as current))
- B = magnetic field

- |FB| = qvBsinθ
- θ is angle between v and B

- Direction of FB is given by Right-Hand-Rule (RHR)
- Index finger: B-field
- Thumb: velocity of charge or current
- Middle finger: FB

- ⊙ = out of the page (positive)
- ⓧ = into the page (negative)

Lorentz Force (FL or FB + FE) [N] : total force on a charged particle, including the electrostatic force by
an E-field and the magnetic force by a magnetic field

- FL = FE + FB = qE + q(v x B)

Magnetic Dipole Moment (μB) : the maximum amount of torque caused by magnetic force on a dipole
that arises per unit value of surrounding magnetic field in vacuum

- μB = IA
- I = current
- A = area vector

Electron-Volt (eV) : unit of energy for small scales of charge (like electrons), the amount of potential
energy gained when an electron moves through a potential difference of 1V
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- ΔU = qΔV = (1.6 x 10-19)(1) = 1.6 x 10-19 J or 1 eV

Cyclotron : a charged particle accelerator
- A charged particle is placed inside a magnetic field causing the particle to move in a circle
- The particle traverses a gap with a potential difference due to a voltage source which accelerates

the particle
- The voltage source is powered by an alternating current so the potential difference will always

cause the particle to “fall” and accelerate even further

Cyclotron Frequency (ω) [Hertz or Hz] : special case of angular frequency regarding a charged particle
moving through a magnetic field

- ω = 𝑞𝐵
𝑚

- q = charge on particle
- B = magnetic field
- m = mass of particle

Permeability of free space (μo) [Tesla meter / Ampere] : constant used to quantify the strength of a
magnetic field emitted by an electric current

- μo= 4π x 10-7

Magnetic Flux (ΦB) [T m2 or Webber (Wb)] :

- Φ
𝐵

= ∮ 𝐵 • 𝑑𝐴

- B = magnetic field
- dA = differential area element

Solenoid : coil of wire that is lightly wound and carrying a current, creating a uniform magnetic field
within the inside of the solenoid

Toroid : similarly to a solenoid, a coil of wire is lightly wound about a circular pattern and carrying a
current, creating a uniform magnetic field within the inside of the toroid
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Hall’s Effect
- Current flows through the conducting strip
- A B-field is going in and through the strip
- Positive charges accumulate to the top of

the magnetic strip due to FB
- Polarization creates a potential difference

(ΔVHall) and E-field from the top to bottom of the
strip

- Charges feel a magnetic force and
electrostatic force

Charges that are allowed to flow through the conducting strip have achieved equilibrium (forces cancel)
FE = FB
qE = qVdB
E = VdB
Since : Since Vd = :∆𝑉 = 𝐸𝑑 𝐼

𝑛𝑞𝐴

∆𝑉
𝐻𝑎𝑙𝑙

= 𝑉
𝑑
𝐵𝑑 ∆𝑉

𝐻𝑎𝑙𝑙
= 𝐼

𝑛𝑞𝐴 𝐵𝑑

∆𝑉
𝐻𝑎𝑙𝑙

= 𝐼
𝑛𝑞𝐴 𝐵𝑑 = 𝑉

𝑑
𝐵𝑑

Notice: Charges that can flow through the conducting strip require a speed of (this is called a𝑉
𝑑

= 𝐸
𝐵

velocity selector because charges of a certain speed are only allowed to flow through)

Force on a current carrying wire in a uniform B-field
This section is for proving how FB = I(L x B)
Remember:

- Q = nqAL
- I = nqAVd

FB = Q(Vd x B)
FB = nqAL(Vd x B)
FB = I(L x B)
L is the wire length and its direction is same as current

Force on a curved current carrying wire in a uniform B-field
FB = I(L x B)
dFB = I(ds x B)

FB = (contour/line integral)𝐼
1

2

∮ 𝑑𝑠 𝑥 𝐵

Note: contour integrals are part of vector calculus which
won’t be explored in AP Physics C
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Force on a rectangular current carrying wire in a uniform B-field
Approach: split each side length into its own section and superimpose
FB = I(L x B)

1. FB1 = I(LBsin90˚) ǩ = ILB ǩ
2. FB2 = I(LBsin0˚) ǩ = 0 ǩ
3. FB3 = I(LBsin90˚) -ǩ = ILB -ǩ
4. FB4 = I(LBsin0˚) ǩ = 0 ǩ

Σ𝐹 = 𝐼𝐿𝐵 − 𝐼𝐿𝐵 = 0

The addition of a pivot in the middle will cause the rectangular current
carrying wire to rotate

1. FB1 = I(bBsin90˚) ǩ = IbB ǩ
2. FB2 = I(aBsin0˚) ǩ = 0 ǩ
3. FB3 = I(bBsin90˚) -ǩ = IbB -ǩ
4. FB4 = I(aBsin0˚) ǩ = 0 ǩ

Σ𝐹 = 0
τ = r x FB

1. τ1 = rF ĵ = a/2 IbB ĵ
2. τ3 = rF ĵ = a/2 IbB ĵ

τ = r x FBΣ
abIB ĵ = μB x B ĵ (μB = magnetic dipole moment, ǩ)Στ =

A B-field going into (-ǩ) and through the wire will cause the
rectangular current carrying wire to contract

A B-field going out (ǩ) and through the wire will cause the
rectangular current carrying wire to expand
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Force on a semi-circular current carrying wire in a uniform B-field

FB = I(L x B) ȓ [general eq.]
dFB = I(ds x B) ȓ [turn into differential]
dFB = I(Rdθ * B) ȓ [substitute ds = rdθ]
dFB = IBRcosθdθ î + IBRsinθdθ ĵ [turn ȓ into î and ĵ components]

FB = [apply limits]𝐼𝐵𝑅
0

π

∫ 𝑐𝑜𝑠θ𝑑θ î + 𝐼𝐵𝑅
0

π

∫ 𝑠𝑖𝑛θ𝑑θ ĵ

FB = [integrate]𝐼𝐵𝑅(𝑠𝑖𝑛θ)
0
π î + 𝐼𝐵𝑅(− 𝑐𝑜𝑠θ)

0
π ĵ

FB = [evaluate]𝐼𝐵𝑅(0 − 0) î + 𝐼𝐵𝑅(− 1 − (− 1)) ĵ
FB = [simplify]2𝐼𝐵𝑅 ĵ

Torque on a circular current loop & magnetic dipole moment

τ = 0 τ = max τ = 0
KE = 0 KE = max KE = 0
U = min (negative) U = 0 U = max
Stable Equilibrium Unstable equilibrium
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Potential Energy of a magnetic dipole moment in a uniform B-field (drawing
parallels)
Magnetic Dipole Electrostatic Dipole

μB = IA
τ = μBx B

UB = -μB * B
UB = -IA * B

p = qd
τ = p x E

UE = -p * E
UE = -qd * E

Biot-Savart’s Law
Law that tells us the magnetic field due to a
current some distance away from said current

- Similar to Coulomb’s Law with
distributed charges

𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑑𝑠 𝑥 ȓ

|𝑟|2

- ds = differential wire element
- r = distance from ds to point P or point of interest
- ȓ = unit vector along r towards point P or point of interest
- μo = permeability of free space = 4π x 10-7 T m / A
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1. Biot-Savart's Law on an infinitely long wire

r = 𝑎2 + 𝑥2

sinθ = =𝑎
𝑟

𝑎

𝑎2+𝑥2

ds = dx
ds x ȓ = ds * 1 * sinθ ǩ = sinθds ǩ

[general eq.]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑑𝑠 𝑥 ȓ

|𝑟|2

ǩ [sub ds x ȓ = sinθds ǩ]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑠𝑖𝑛θ𝑑𝑠

|𝑟|2

ǩ [sub sinθ = and ds = dx]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π *
𝑎

𝑎2+𝑥2
𝑑𝑥

|𝑟|2
𝑎

𝑎2+𝑥2

ǩ [sub r = ]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π *
𝑎

𝑎2+𝑥2
𝑑𝑥

𝑎2+𝑥2 𝑎2 + 𝑥2

ǩ [take out constant and combine terms]𝑑𝐵
𝑝

=
µ

𝑜
𝐼𝑎

4π * 𝑑𝑥

(𝑎2+𝑥2)3/2

ǩ [apply limits from -∞ to ∞]𝐵
𝑝

=
µ

𝑜
𝐼𝑎

4π *
−∞

∞

∫ 𝑑𝑥

(𝑎2+𝑥2)3/2

ǩ [integrate (integral solution given)]𝐵
𝑝

=
µ

𝑜
𝐼𝑎

4π * ( 𝑥

𝑎2(𝑎
2
+𝑥2)1/2

)
−∞
∞

ǩ [evaluate from -∞ to ∞, a2 + x2 = x2]𝐵
𝑝

=
µ

𝑜
𝐼𝑎

4π * ( ∞

𝑎2∞
+ ∞

𝑎2∞
)

ǩ [simplify]𝐵
𝑝

=
µ

𝑜
𝐼𝑎

4π * ( 2

𝑎2 )

ǩ [simplify]𝐵
𝑝

=
µ

𝑜
𝐼

2π𝑎
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2. Biot-Savart's Law on a circular current loop at loop’s center

ds x ȓ = ds * 1 * sin90˚ = ds ǩ (ȓ always ⟂ ds)
ds = Rdθ

[general eq.]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑑𝑠 𝑥 ȓ

|𝑟|2

ǩ [sub ds x ȓ = ds ǩ]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑑𝑠

|𝑟|2

ǩ [sub r2 = R2 and take out R constant]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π𝑅2 * 𝑑𝑠

ǩ [sub ds = Rdθ]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π𝑅2 * 𝑅𝑑θ

ǩ [cancel R and simplify]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π𝑅 * 𝑑θ

ǩ [apply limits from 0 to 2π]𝐵
𝑝

=
µ

𝑜
𝐼

4π𝑅 *
0

2π

∫ 𝑑θ

ǩ [integrate and evaluate]𝐵
𝑝

=
µ

𝑜
𝐼

4π𝑅 * 2π

ǩ [simplify]𝐵
𝑝

=
µ

𝑜
𝐼

2𝑅
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3. Biot-Savart's Law on a circular current loop at a distance from loop’s center along z-axis

ds x ȓ = ds * 1 * sin90˚ = ds ǩ (ȓ always ⟂ ds)
Note: Since x/y-components are canceled out due to
symmetry, only z-components will be superimposed:
ds ǩ → ds cosθ ǩ

r = 𝑅2 + 𝑧2

cosθ = =𝑅
𝑟

𝑅

𝑅2+𝑧2

[general eq.]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑑𝑠 𝑥 ȓ

|𝑟|2

ǩ [sub ds x ȓ = ds cosθ ǩ]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑑𝑠

|𝑟|2 𝑐𝑜𝑠θ

ǩ [sub cosθ = and r = ]𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑑𝑠

𝑅2+𝑧2 * 𝑅

𝑅2+𝑧2

𝑅

𝑅2+𝑧2
𝑅2 + 𝑧2

ǩ [combine like terms and integrate ds]𝐵
𝑝

=
µ

𝑜
𝐼𝑅

4π(𝑅2+𝑧2)3/2 * ∮ 𝑑𝑠

ǩ [ (path of ds)]𝐵
𝑝

=
µ

𝑜
𝐼𝑅

4π(𝑅2+𝑧2)3/2 * 2π𝑅 ∮ 𝑑𝑠 = 2π𝑅

ǩ [simplify]𝐵
𝑝

=
µ

𝑜
𝐼𝑅2

2(𝑅2+𝑧2)3/2

If z = 0, then R2 + z2 = R2 If z = ∞, then R2 + z2 = z2

ǩ (matches example 2) ǩ (B varies by ⅓ as z increases)𝐵
𝑝

=
µ

𝑜
𝐼

2𝑅 𝐵
𝑝

=
µ

𝑜
𝐼𝑅2

2𝑧3

Force between two current carrying wires
Bxy: B-field created by wire x @ location of wire y
B12: B-field created by wire 1 @ location of wire 2
B21: B-field created by wire 2 @ location of wire 1

-ǩ ǩ𝐵
12

=
µ

𝑜
𝐼

1

2π𝑎 𝐵
21

=
µ

𝑜
𝐼

1

2π𝑎

î -î𝐹
12

 =  𝐼
1
(𝐿 𝑥 𝐵

21
) 𝐹

21
 =  𝐼

2
(𝐿 𝑥 𝐵

12
)

î -î𝐹
12

= 𝐼
1
𝐿

µ
𝑜
𝐼

2

2π𝑎 𝐹
21

= 𝐼
2
𝐿

µ
𝑜
𝐼

1

2π𝑎

The two wires will come together when the current is parallel
However, if the current was antiparallel, the wires would repel each
other
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Ampere’s Law
The magnetic field along a closed path equals the product of μo (permeability of free space) and the total
current through the area enclosed by the path

- ∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

- Similar to Gauss’ Law, used for highly symmetric geometries

1. Ampere’s Law on an infinitely long wire

[general eq.]∮ 𝐵
1

• 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[B || ds, remove dot]∮ 𝐵
1
𝑑𝑠 = µ

𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[B constant]𝐵
1

∮ 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[integrate ds]𝐵
1
(2π𝑎) = µ

𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[simplify]𝐵
1

=
µ

𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

2π𝑎

[no current in loop]∮ 𝐵
2

• 𝑑𝑠 = 0

[vector calculus needed]∮ 𝐵
3

• 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

2. Ampere’s Law on two wires

[only I1 in loop]∮ 𝐵
1

• 𝑑𝑠 = µ
𝑜
𝐼

1

[only I2 in loop]∮ 𝐵
2

• 𝑑𝑠 = µ
𝑜
𝐼

2

[no I in loop]∮ 𝐵
3

• 𝑑𝑠 = 0

[I1 and I2 in loop]∮ 𝐵
4

• 𝑑𝑠 = µ
𝑜
[𝐼

1
+ 𝐼

2
]
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3. Ampere’s Law on an a looped wire

[only I in loop]∮ 𝐵
1

• 𝑑𝑠 = µ
𝑜
𝐼

1

Note: Can’t actually perform integral because B isn’t constant
Must use Biot-Savart’s Law

[no I in loop]∮ 𝐵
2

• 𝑑𝑠 = 0

[no I in loop]∮ 𝐵
3

• 𝑑𝑠 = 0

4. Ampere’s Law on an a thick wire
Outside the thick wire (r > a):

[general eq.]∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[B || ds, remove dot]∮ 𝐵𝑑𝑠 = µ
𝑜
𝐼

[B constant]𝐵∮ 𝑑𝑠 = µ
𝑜
𝐼

[integrate ds]𝐵(2π𝑎) = µ
𝑜
𝐼

[simplify]𝐵 =
µ

𝑜
𝐼

2π𝑟

Inside the thick wire (r < a):
To get the amount of total current enclosed, we need a ratio:

𝐼
𝑡𝑜𝑡𝑎𝑙

= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 * 𝑎𝑟𝑒𝑎 = 𝐼

π𝑎2 * π𝑟2 = 𝐼𝑟2

𝑎2

[general eq.]∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[B || ds, remove dot]∮ 𝐵𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[B constant]𝐵∮ 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[integrate ds]𝐵(2π𝑎) = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[replace Itotal = ]𝐵(2π𝑎) = µ
𝑜

𝐼𝑟2

𝑎2
𝐼𝑟2

𝑎2

[simplify]𝐵 =
µ

𝑜
𝐼𝑟

2π𝑎2
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Gauss’ Law for Magnetism
States that there’s no magnetic monopoles

- ∮ 𝐵 • 𝑑𝐴 = 0

- Magnetostatic flux through an enclosed surface is always 0

1. Magnetic Flux through a rectangular loop

[general eq.]Φ
𝐵

= ∮ 𝐵 • 𝑑𝐴

[replace B and dA]𝑑Φ
𝐵

=
µ

𝑜
𝐼

2π𝑟 * 𝑏𝑑𝑟

[apply limits]Φ
𝐵

=
𝑎

𝑎+𝑐

∫
µ

𝑜
𝐼𝑏𝑑𝑟

2π𝑟

[take out constants]Φ
𝐵

=
µ

𝑜
𝐼𝑏

2π
𝑎

𝑎+𝑐

∫ 𝑑𝑟
𝑟

[integrate and evaluate]Φ
𝐵

=
µ

𝑜
𝐼𝑏

2π 𝑙𝑛| 𝑎+𝑐
𝑎 |
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Creating a Uniform B-field
Solenoid Model: multiple current loops stacked on top of each other (this simplifies reality)

Large scale (entire solenoid) Medium scale (inside solenoid) Small scale (between each loop)

N = number of loops I = current in each loop
n = loop density = N/L L = length of ds or length of selected area of N number of loops
Understand: Only side length “L” inside solenoid will create B-field

[general eq.]∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[Itotal = IN = current * # of loops]𝐵∮ 𝑑𝑠 = µ
𝑜
𝐼𝑁

[ = L from “Understand”]𝐵𝐿 = µ
𝑜
𝐼𝑁 ∮ 𝑑𝑠

[simplify]𝐵 = µ
𝑜
𝐼 𝑁

𝐿

[n = N/L = loop density]𝐵 = µ
𝑜
𝐼𝑛

Toroid:

[general eq.]∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

[Itotal = IN]𝐵∮ 𝑑𝑠 = µ
𝑜
𝐼𝑁

[ = 2πr from circumference]𝐵(2π𝑟) = µ
𝑜
𝐼𝑁 ∮ 𝑑𝑠

[simplify]𝐵 =
µ

𝑜
𝐼𝑁

2π𝑟
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TIPS ON HOW TO SOLVE PROBLEMS:
1. IMPORTANT EQUATIONS/CONSTANTS

a. FB = q(Vd x B) = I(L x B)
b. μo= 4π x 10-7 (Permeability of free space)
c. (recall I = nqAVd)∆𝑉

𝐻𝑎𝑙𝑙
= 𝐼

𝑛𝑞𝐴 𝐵𝑑 = 𝑉
𝑑
𝐵𝑑

d. (velocity selector)𝑉
𝑑

= 𝐸
𝐵

e. 1 eV = 1.6 x 10-19 J (1 electron volt)

f. (Biot-Savart’s Law)𝑑𝐵
𝑝

=
µ

𝑜
𝐼

4π * 𝑑𝑠 𝑥 ȓ

|𝑟|2

g. (Ampere’s Law)∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙

h. Itotal = current density * area (only applies to within a current carrying wire)
i. Itotal =

𝐼
𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 * 𝑎𝑟𝑒𝑎 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

i. (Magnetic flux)Φ
𝐵

= ∮ 𝐵 • 𝑑𝐴

j. μB = IA (magnetic dipole moment)
k. τ = μBx B (torque on magnetic dipole moment)
l. τ = r x FB (general torque caused by FB)
m. ω = (cyclotron frequency)𝑞𝐵

𝑚

n. (Magnetic field “a” distance away from current/wire)𝐵
𝑝

=
µ

𝑜
𝐼

2π𝑎

o. Bsolenoid = μonI = μoNI / L (B-field inside a solenoid)
2. RHR:

a. Thumb points in direction of current, fingers curl in direction of B-field
i. You can also curl finders in direction of current and thumb points in direction of

B-field, useful for current carrying loops
b. Index finger points in direction of B-field, Thumb is in direction of Vd or L, Middle

finger is in direction of FB
i. F = A(B x C), B = thumb, C = index, F = middle

3. Ampere’s Law should only be used in completely symmetrical situations (usually only in one
plane) while Biot-Savart’s Law should be used in all other situations

4. ȓ is in direction pointing towards point P or point of interest
5. Recall formula for final velocity (Vf) for a particle moving through a potential difference

a. Vf =
2𝑞∆𝑉

𝑚

6. Solving problems where magnetic field causes a particle to rotate in a circle
a. FB = mvd2 / R
b. q(vd x B) = mvd2 / R
c. qvdB = mvd2 / R
d. qB = mvd / R
e. Some questions may ask for KE: KE = ½mvd2
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7. Wires parallel to each other with current going in the SAME direction will attract (FB towards
each other)

8. Wires parallel to each other with current going in OPPOSIˇE directions will repel (FB away from
each other)

9. If question gives positive charges moving in a certain direction, treat it as current to help you
understand direction of Magnetic Force or B-field

75



UNIT 8: Electromagnetic Induction/Faraday’s Law
Fundamentals of Unit 8 Physics
Electromagnetic Induction : in Unit 7, we converted electricity into magnetism and B-fields, now we’re
converting magnetism into electricity

Inductor : a device that diminishes current and fights the current by producing an induced current in the
opposite direction

- Purpose is to smooth out a sudden jump in current within a circuit as it grows (this spike can
cause damage to the circuit)

- Ex: Solenoid, wireless chargers

Inductance (L) [Henrys or H] : characteristic that causes an inductor to diminish current with back emf

- 𝐿 =−
ε

𝐿
𝑑𝐼
𝑑𝑡

= 𝑁
Φ

𝐵

𝐼

or “Back EMF” : the opposing emf generated in an inductor as a result of current growth or decayε
𝐿

- ε
𝐿

=− 𝐿 𝑑𝐼
𝑑𝑡

Faraday’s Law
A changing magnetic flux through a coil of wires induces an electromotive force “emf” according to:

[Webbers or Wb]ε =−
𝑑Φ

𝐵

𝑑𝑡 =− 𝑑
𝑑𝑡 ∮ 𝐵 • 𝑑𝐴 = ∮ 𝐸 • 𝑑𝑠 Φ

𝐵
= ∮ 𝐵 • 𝑑𝐴

- Induction depends on geometry

- [N = number of loops]ε(𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑) =− 𝑁
𝑑Φ

𝐵

𝑑𝑡

Lenz’s Law
Induced currents create magnetic fields that oppose the emf or the rate of change of magnetic flux, that
created the induced current in the first place

- A way to get the direction of induced current without thinking about the area vector
- Conserves energy in such a way where the direction of induced current doesn’t create free energy
- Eddy Currents = currents within a solid and opposes motion and dissipates heat

Changing B-FIELD creates INDUCED STATIC E-FIELD
- Induced static E-fields don’t have a start or stop point in space
- Generated due to changing B-field
- Not fixed in time
- Appear and disappear constantly
- Not conservative

Case Studies for Electromagnetic Induction/Faraday’s Law
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1. Loop with increasing flux (Magnet = N/S going left)

B is going left and increasing

Current generated so that Binduced is going left

Note: Current is created in such a way that it
creates an induced magnetic field opposite to the
increase in magnetic flux, so induce magnetic field
would be going to the right (which current would
correlate to)

(positive) so ɛ (negative)
𝑑Φ

𝐵

𝑑𝑡

2. Loop with decreasing flux (Magnet = N/S going right)

B is going left and decreasing

Current generated so that Binduced is going left

(negative) so ɛ (positive)
𝑑Φ

𝐵

𝑑𝑡

3. Loop with decreasing flux (Magnet = S/N
going left)

B is going right and increasing

Current generated so that Binduced is going left

Note: Flux is increasing in the negative direction

means that is negative (area vector opposite
𝑑Φ

𝐵

𝑑𝑡

to B-field or cos180˚ = -1)

(negative) so ɛ (positive)
𝑑Φ

𝐵

𝑑𝑡
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4. Loop with increasing flux (Magnet = S/N going right)

B is going right and decreasing

Current generated so that Binduced is going right

(positive) so ɛ (negative)
𝑑Φ

𝐵

𝑑𝑡

5. Time varying current loop near another loop

I(t) is increasing so B going right is increasing

Current (I) is generated to create Binduced to oppose B

I(t) is increasing so (positive) so ɛ (negative)
𝑑Φ

𝐵

𝑑𝑡

6. Moving loop near a wire

B going in and decreasing

Current (I) is generated to create Binduced going in (to
help the decreasing B)

(positive or negative B field and negative area
𝑑Φ

𝐵

𝑑𝑡

vector → positive) so ɛ (negative)
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7. Induced current in a wire wrapped around iron core
I(t) is increasing so B(t) going left is
increasing

Current (Iinduced) is generated to create Binduced

to oppose B

I(t) is increasing so (positive) so ɛ
𝑑Φ

𝐵

𝑑𝑡

(negative)

Case Studies for Electromotive Force (EMF due to motion of something)
1. Metal Bar

- Metal bar is polarized as charges in the
metal bar are moved due to the magnetic field

- There’s no continuous flow of charge
- Ɛ = 0

2. Rectangular Loop

- Metal loop is polarized as charges in the
metal loop are moved due to the magnetic field

- = BL2 (constant)Φ
𝐵

- Since flux is constant, Ɛ = 0
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3. Stationary frame with free moving bar

- Metal loop is polarized as charges in the
metal loop are moved due to the magnetic field

- The moving bar changes flux (because it
changes area)

- = BLx (x is changing)Φ
𝐵

- Since flux is changing, Ɛ ≠ 0
- Current is counter clockwise to create flux

coming out to oppose increasing flux going in
- Bar feels a force leftwards, proportional to

its speed (bar will eventually stop and no force is
felt)

Growth and Decay of RL Circuits (very similar to RC Circuits)
Growth:

Initially (t = 0):
- No current in circuit

Growing (t > 0):
- Current begins to grow
- Current growth creates “back emf” (ƐL)

- ƐL opposes Ɛbattery
- Inductor acts as open switch (ƐL = Ɛbattery)
- All voltage drop at inductor, none at resistor
- Current growth at fastest rate

- Current begins to level out as it nears the max
- ƐLdecreases as current begins to level out

After Long Time (t → ∞):
- ƐL → 0
- Inductor acts as highly conductive wire

(time constant)τ = 𝐿
𝑅

(Current through entire circuit as a function of time)𝐼(𝑡) = ε
𝑅 (1 − 𝑒

− 𝑅
𝐿 𝑡

)

(Voltage across resistor)∆𝑉
𝑅

(𝑡) = ε(1 − 𝑒
− 𝑅

𝐿 𝑡
)

(Back emf as a function of time)ε
𝐿
(𝑡) = ε(𝑒

− 𝑅
𝐿 𝑡

)

Decay:
Initially (t = 0 after battery is disconnected after long time):

- Current in circuit is max (Io = )ε
𝑅

Decaying (t > 0 after battery is disconnected after long time):
- Current begins to decrease
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- Voltage across resistor and inductor begins to decrease
- ƐL begins to decrease from Ɛ

(Current through entire circuit as a function of time)𝐼(𝑡) = ε
𝑅 (𝑒

− 𝑅
𝐿 𝑡

)

(Voltage across resistor)∆𝑉
𝑅

(𝑡) = ε(𝑒
− 𝑅

𝐿 𝑡
)

(Back emf as a function of time, negative means its opposing)ε
𝐿
(𝑡) =− ε(𝑒

− 𝑅
𝐿 𝑡

)

Energy in magnetic field in RL circuit:

(energy density, energy stored in magnetic field per volume)𝑢 = 𝐵2

2µ
𝑜

Why Maxwell’s Equations?
Background:
How does Maxwell Equations work in empty space? (no charges or current)

Gauss’ Law: (qenc = 0)∮ 𝐸 • 𝑑𝐴 = 0

Gauss’ Law for Magnetism: (No magnetic monopoles)∮ 𝐵 • 𝑑𝐴 = 0

Ampere’s Law: (Itotal = 0)∮ 𝐵 • 𝑑𝑠 = 0

Faraday’s Law: (doesn’t equal 0)∮ 𝐸 • 𝑑𝑠 =− 𝑑
𝑑𝑡 ∮ 𝐵 • 𝑑𝐴

- Maxwell believed there should be a symmetry between the equations, and therefore didn’t think
Ampere’s Law should equal 0 as well.

- Since Ampere’s Law and Faraday's Law had ds in the integral, should they not have similar
results?

- Both magnetic fields and E-fields are properties of space so they should have some sort of
similarity or relation.

Experiment: Capacitor Paradox
In order to find the true value of Ampere’s Law, Maxwell created a capacitor experiment called the
Capacitor Paradox.

- Maxwell figured out that the Amperian loop
didn’t have to be a loop.

- It could be as large or as oddly shaped as it
wanted, as long as it was bounded by the area of the
loop (essentially keeping that main loop and you
can go wherever).

- But what happens when it encapsulates just
empty space between the capacitor?
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- There’s a distribution of charge but no current.
- But we still need to account for those charges between the capacitor plates

Mathematical Proof:

Knowns: 𝐼 = 𝑑𝑞
𝑑𝑡 Φ

𝐸
=

𝑞
𝑒𝑛𝑐

ϵ
𝑜

∮ 𝐸 • 𝑑𝐴 =
𝑞

𝑒𝑛𝑐

ϵ
𝑜

[general eq.]∮ 𝐸 • 𝑑𝐴 =
𝑞

𝑒𝑛𝑐

ϵ
𝑜

[take time derivative to get resemblance of current ( )]𝑑
𝑑𝑡 ∮ 𝐸 • 𝑑𝐴 =

𝑑𝑞
𝑒𝑛𝑐

𝑑𝑡
1
ϵ

𝑜

𝑑𝑞
𝑒𝑛𝑐

𝑑𝑡

[Idisplacement = ]𝑑
𝑑𝑡 ∮ 𝐸 • 𝑑𝐴 = 𝐼

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
1
ϵ

𝑜

𝑑𝑞
𝑒𝑛𝑐

𝑑𝑡

𝐼
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

= ϵ
𝑜

𝑑
𝑑𝑡 ∮ 𝐸 • 𝑑𝐴

Conclusion:

Ampere-Maxwell’s Law: ∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡
+ µ

𝑜
ϵ

𝑜
𝑑
𝑑𝑡 ∮ 𝐸 • 𝑑𝐴

- This new equation completes the symmetry that Maxwell was looking for.
- It describes how a static B-field creates a changing E-field
- A static E-field creates a changing B-field due to Faraday’s Law

After a lot of work, Maxwell eventually proved this with multi-dimensional vector calculus
(multivariable), these are the results:
∂2𝐸

∂𝑥2 = µ
𝑜
ϵ

𝑜
∂2𝐸

∂𝑡2
∂2𝐵

∂𝑥2 = µ
𝑜
ϵ

𝑜
∂2𝐵

∂𝑡2

Eventually, Maxwell obtained the wave formula that describes this self-propagation phenomenon:
u = ??
v = speed of wave propagation
∂2𝑢

∂𝑥2 − 1

𝑣2
∂2𝑢

∂𝑡2

𝑣 = 1

µ
𝑜
ϵ

𝑜

= 2. 998 𝑥 108 𝑚/𝑠

REVELATION:
These B-fields and E-fields of empty space are oscillating and self-propagating at the speed of light,
proving that light is electromagnetic radiation.
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TIPS ON HOW TO SOLVE PROBLEMS:
1. IMPORTANT EQUATIONS/CONSTANTS

a. (Faraday’s Law)ε =−
𝑑Φ

𝐵

𝑑𝑡 =− 𝑑
𝑑𝑡 ∮ 𝐵 • 𝑑𝐴 = ∮ 𝐸 • 𝑑𝑠

b. P = (Power Dissipated)𝐼∆𝑣

c. (Energy Dissipated)𝐸 = ∫ 𝑃𝑑𝑡

d. = IR (emf relationship to Current/Resistance)ε
e. (back emf for an inductor)ε

𝐿
=− 𝐿 𝑑𝐼

𝑑𝑡

f. (inductance, usually given)𝐿 =−
ε

𝐿
𝑑𝐼
𝑑𝑡

= 𝑁
Φ

𝐵

𝐼

g. μo= 4π x 10-7 (Permeability of free space)

h. (speed of light/wave propagation)𝑣 = 1

µ
𝑜
ϵ

𝑜

= 2. 998 𝑥 108 𝑚/𝑠

i. RL Circuits:
i. (time constant)τ = 𝐿

𝑅

ii. (energy density)𝑢 = 𝐵2

2µ
𝑜

iii. Growth:

1. (Current through entire circuit)𝐼(𝑡) = ε
𝑅 (1 − 𝑒

− 𝑅
𝐿 𝑡

)

2. (Voltage across resistor)∆𝑉
𝑅

(𝑡) = ε(1 − 𝑒
− 𝑅

𝐿 𝑡
)

3. (Back emf as a function of time)ε
𝐿
(𝑡) = ε(𝑒

− 𝑅
𝐿 𝑡

)

iv. Decay:

1. (Current through entire circuit)𝐼(𝑡) = ε
𝑅 (𝑒

− 𝑅
𝐿 𝑡

)

2. (Voltage across resistor)∆𝑉
𝑅

(𝑡) = ε(𝑒
− 𝑅

𝐿 𝑡
)

3. (Back emf as a function of time)ε
𝐿
(𝑡) =− ε(𝑒

− 𝑅
𝐿 𝑡

)

j. (“Current” in empty space of capacitor)𝐼
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

= ϵ
𝑜

𝑑
𝑑𝑡 ∮ 𝐸 • 𝑑𝐴

k. (Ampere-Maxwell’s Law)∮ 𝐵 • 𝑑𝑠 = µ
𝑜
𝐼

𝑡𝑜𝑡
+ ϵ

𝑜
𝑑
𝑑𝑡 ∮ 𝐸 • 𝑑𝐴

2. is the same as but (emf) is used when dealing with flow in a wire or current while isε ∆𝑣 ε ∆𝑣
used for charged particles
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